 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		大数据是智慧城市的重要资产
城市大数据是智慧城市的重要资产。我们通过各种各样的数据库,包括人口库、法人库、地理库、经济库等,建立政务云、行业云、工业云,通过数据融合、挖掘数据、共享数据,支撑我们的智慧城市。感知城市、无线城市、数字城市、宽带城市,是智慧城市的必然要求。创新城市、人文城市、平安城市、幸福城市、海绵城市、宜居城市、健康城市、绿色城市,是智慧城市的题中应有之义。
大数据与政府公共服务。美国规定1/4的政府信息技术预算要用到云计算上面,就是说利用云来管理。我们有些地方政府不自建云,跟阿里等合作。有些政府把地方政府的数据都搬到阿里云上面,阿里帮它分析,也有很多政府没有把数据放到阿里云,而是让阿里帮其建一个云,把阿里的分析工具引进到政府的云里头,利用阿里的技术来帮着分析。腾讯把政府的微信公众号纳入到腾讯的微信城市服务里,一方面帮着政府来分析一些应用,另一方面也实现对政府的监督。当然,阿里、腾讯也希望借此获得政府的一些数据。
大数据与交通管理。例如,以色列特拉维夫有很多摄像头,通过这种摄像头可以看到不同时间、不同马路的交通状况:是交通拥堵,还是交通管制,还是交通事故。重要的是,通过大数据,把所有现象组合起来,实时发到每个驾驶员、行人那里。驾驶员和行人可以据此来选择迂回的路段。我在北京也看到不少交通显示屏,可是有时我看到显示屏的时候,实际上处于前进不得也后退不得的状况,这就说明我们的大数据应用还有待改进。
大数据与环保。在美国密西西比河,一个装置沉到水底取样,升到水面再取样,然后把污染检测的结果通过卫星回传到后台,后台通过云计算、数据中心、大数据挖掘,得出河流的污染状况,然后做一个数字化河流的模型,点击网上河流的某一点,就知道这个点的污染状况。我们国家很多地方,像上海就测试了全区的排放量、地表水质量、噪声。无锡在太湖上也放了很多的传感器,但它不是活动的,而是固定的,当然也能测出不同位置的污染状况。
大数据与社会治安。美国的毒品现在已经不敢露天种植了,因为卫星、无人机、飞机都可以监测到。一些人就在大城市里租或者买一个大房子,拿花盆来种大麻等毒品。没有阳光,就用LED灯来照明。这种情况靠飞机就查不着了。于是,美国把电力公司的大数据收集来。一般的人家用电灯,是晚上用得多,白天用得少,而这种地方是白天、晚上都用。所以,美国根据电力的消耗来判断某个建筑物内是否有问题。
大数据与城市发展。上海主办开发数据大赛,包括城市道路、地铁、一卡通、公交车、出租车等,面向全球征集怎么改善交通、便利市民以及怎么创新。广州鼓励所有骑自行车的人,若发现什么地方不好,就拍下来,然后上传到网上,政府通过这样的措施优化管理。
大数据在农业研究、金融市场、气象预报、新闻报道等方面已经应用得很广泛。比如,沃尔玛基于每个月网购的数量判断客户购买物品时的喜好,优化商品柜台的排列,销量猛增;印第安纳大学学者从成千上万的留言中把微博分成六种心情,从中算出的道琼斯指数,准确率高达87%;Target是美国排行第二的超市,女性顾客很多,孕妇最舍得买东西。Target列出最受孕妇欢迎的商品单,购买此单上商品的顾客很可能就是孕妇。
大数据、智能化、移动互联网、云计算,以及物联网结合的大智移云代表了信息技术发展新阶段的时代特征。大数据支撑了社会的精细化管理和智慧城市的建设,是提升管理和服务的重要抓手。
我国大数据还有很长的路要走,还面临很大的挑战。作为世界人口第一大国,我国产生的数据量极为庞大,但真正存储下来的数据仅仅是北美的7%、日本的60%,而且我国所存的数据应保护的有一半未保护。比如,我国在医疗健康、交通治理、环保等方面的研究还不足,还存在数据分散、监测的覆盖率较低等问题。另外,我国一些部门和机构拥有大数据,但是难以共享,导致信息不完整或重复投资,有数据的不挖掘、不应用,想挖掘、想应用的没数据。要解决这个问题,政府要更积极地作为
	
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23