
剖析大数据在工业4.0智能工厂中的应用
大数据正以一种革命风暴的姿态闯入人们视野,其技术和市场在快速发展,而驾驭大数据的呼声则一浪高过一浪。于是有人说中国大数据产业有炒作“过热”之嫌,也有人认为大数据投资正当时。随着近些年国家工业信息化进程脚步的不断加快,以及国际社会在工业现代化、工业4.0等方面的不断演进,使得大数据技术在工业行业以及制造业方面也进行了比较深度的技术融合和应用融合,我们就来聊聊在上述领域的大数据应用。
近年来出现的人力短缺、工资上涨、产品交付期短和市场需求变动大等问题,使得制造业正面临新一波转型挑战。如何在控制生产成本的同时,还能提高生产力与效率,则是转型的主要目的。在这样的背景下,德国、美国等制造业发达国家无不积极推动“工业4.0”。
“工业4.0”本质上是通过信息物理系统实现工厂的设备传感和控制层的数据与企业信息系统融合,使得生产大数据传到云计算数据中心进行存储、分析,形成决策并反过来指导生产。大数据的作用不仅局限于此,它可以渗透到制造业的各个环节发挥作用,如产品设计、原料采购、产品制造、仓储运输、订单处理、批发经营和终端零售。
大数据改善订单处理方式
我们都知道,大数据技术不管是在哪个行业当中进行应用,其最为根本的优势就是预测能力,用户利用大数据的预测能力可以精准的了解市场发展趋势,用户需求以及行业走向等多方面的数据,从而为用户自身企业的发展制定更适合的战略和规划。企业通过大数据的预测结果,便可以得到潜在订单的数量,然后直接进入产品的设计和制造以及后续环节。
也就是说,企业可以通过大数据技术,在客户下单之前进行订单处理。而传统企业通过市场调研与分析,得到粗略的客户需求量,然后开始生产加工产品,等到客户下单后,才开始订单处理。这大大延长了产品的生产周期。现在已经有很多制造业行业的企业用户开始利用大数据技术来对销售数据进行大数据分析,这对于提升企业利润方面是非常有利的。
大数据击败传统仓储运输
由于大数据能够精准预测出个体消费者的需求以及消费者对于产品价格的期望值,企业在产品设计制造之后,可直接派送到消费者手中。虽然此时消费者还没有下单,但是消费者最终接受产品是一个大概率事件。这使得企业不存在库存过剩的问题,也就没有必要进行仓储运输和批发经营。
工业采购变得更加精准
大数据技术可以从数据分析中获得知识并推测趋势,可以对企业的原料采购的供求信息进行更大范围的归并、匹配,效率更高。大数据通过高度整合的方式,将相对独立的企业各部门信息汇集起来,打破了原有的信息壁垒,实现了集约化管理。
用户可以根据流程当中每一个环节的轻重缓急来更加科学的安排企业的费用支出,同时,利用大数据的海量存储还可以对采购的原料的附带属性进行更加精细化的描述与标准认证,通过分类标签与关联分析,可以更好地评估企业采购资金的支出效果。
大数据让产品设计更优化
借助大数据技术,人们可以对原物料的品质进行监控,发现潜在问题立即做出预警,以便能及早解决问题从而维持产品品质,大数据技术还能监控并预测加工设备未来的故障几率,以便让工程师即时执行最适决策。大数据技术还能应用于精准预测零件的生命周期,在需要更换的最佳时机提出建议,帮助制造业者达到品质成本双赢。
比如日本的Honda汽车公司就将大数据分析技术应用在了电动车的电池上,由于电动车不像汽车或油电混合车一样,可以使用汽油作为动力来源,其唯一的动力就是电池,所以Honda希望进一步了解电池在什么情况下,绩效表现最好、使用寿命最长。Honda公司通过大数据技术,可以搜集并分析车辆在行驶中的一些资讯,如:道路状况、车主的开车行为、开车时的环境状态等,这些资讯一方面可以帮助汽车制造公司预测电池目前的寿命还剩下多长,以便即时提醒车主做更换,一方面也可以提供给研发部门,做为未来设计电池的参考。
大数据让终端零售畅通无阻
对于一家企业来说,供应链方面的业务需求也是整体运作当中非常重要的一环,在零售行业当中的一些企业也将大数据技术融入了进来,沃尔玛的零售链平台提供的大数据工具,将每家店的卖货和库存情况大数据成果向各公司相关部门和每个供应商定期分享。供应商可以实现提前自动补货,这不仅减少门店断货的现象,而且大规模减少了沃尔玛整体供应链的总库存水平,提高了整个供应链条和零售生态系统的投入回报率,创造了非常好的商业价值。
对于工业制造业来说,由于自身在技术创新性等方面的特殊需求,对于大数据技术的需求改变是非常庞大的,这就需要在实际应用过程当中将海量数据变得能够真正被实际应用所用,那么大数据在工业领域和制造业领域等方面也就能起到非常重要的意义了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19