京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据+传媒”影响各行业转型与变革
2016中关村大数据日活动暨京津冀协同发展高峰论坛在中关村国家自主创新示范区展示中心会议中心开幕。围绕 “数据驱动创新,智慧引领未来”这一主题,来自政府、学术界、企业界、传媒界嘉宾,就大数据技术创新、成果转化和产业融合等问题进行全面、深入交流和研讨。北京北大方正承办“2016中关村大数据日——传媒大数据分论坛”,深入探讨并交流了大数据给传媒行业带来的深刻变化,以及如何通过大数据应用构建传媒的核心竞争力等话题。
北京大数据研究院院长、中国科学院院士鄂维南在开场致辞中提到,从长远来看,互联网大数据在传媒行业应用空间非常大。一方面,所有的人都需要用到媒体,另一方面,在现在的条件下,有可能让每一个人都成为新闻界一员。和日本、美国等相比,中国的传统媒体受到的互联网冲击力度更大,然而,互联网只是第一步,大数据是下一步,智能化的一步。希望方正电子和其他企业一起,使传媒大数据应用更上一层楼。
北京师范大学新闻传播学院执行院长喻国明以《技术发展下的传媒业态与转型》为主题,阐述了影响中国传媒业发展变化的基本动因。他认为,智能化的引入,对于整个互联网未来的产业发展具有特别重要的意义,谁能够利用智能化的技术,处理数据的使用,并以更加有效的方式跨界融合整合,谁就能够夺得市场、产业的主动权。在下一轮发展当中,对于数据的智能化处理映射出这个产业最重要的发展路径。
北大计算机研究所教授、博士生导师彭宇新分享了“跨模态大数据分析与识别技术”的最新进展。他介绍说,随着媒体数据的快速增长,出现了两个问题,一是存在大量未上传且敏感的数据“管不住”,二是图像视频很难识别导致“用不好”。不过,随着多模态识别关系和系统的开发与建立,可以突破网络有害信息难以识别、难以利用的问题,最终应用于互联网监管领域,从而促进媒体大数据的运用。
在新闻媒体快速数字化的今天,在数据处理领域出现了哪些新进展?北大计算机研究所研究员、博士生导师赵东岩表示,媒体大数据的语义搜索和系统,可以基于互联网和新闻出版资源的信息,包括社交网络,进行语义分析,构建出专业化的知识库将媒体的信息与知识服务能力提高到新的水平。
新华社中国经济信息社新华丝路事业部总监魏薇表示,目前新华社中国经济信息社正在为国家“一带一路”战略提供信息服务,而这个体系的打造,离不开大数据的支持,需要利用“互联网+信息服务”的思维,打造以“精准数据+智库”为支撑的新华丝路信息服务体系。
人民网技术总监邢华以《大数据时代的传统媒体》为题做了分享。介绍了人民网对大数据应用的成果,重点介绍了正在建设的人民网数据中心项目。
作为传媒行业领先的技术、服务提供商和行业咨询专家,方正电子全力打造DT时代的智慧媒体,已为300余家报社提供DT时代的媒体融合解决方案,在当天的论坛上,来自方正电子的3位技术专家分享了针对互联网大数据的深度挖掘与利用技术、方正传媒大数据的成果以及知识体系建设方案。
方正电子互联网大数据技术开发部部长张丹深度解读了对互联网大数据进行挖掘的方式与技术,其重点是围绕着互联网的数据、业务信息资源和知识库,从内容、人、位置三个方面展开,包括态势的分析,以及敏感事件、热点话题、传播溯源等角度。
方正电子媒体大数据总经理卢岚分享了如何借助大数据,推进媒体的新闻生产,帮助新媒体运营,并开拓媒体经营服务的转型,从而实现新型媒体集团的转型与飞跃。卢岚认为,在DT时代,新闻的未来是分析数据,而媒体的未来就是数据能力。我们的目标是帮助传统媒体打造成为“智慧媒体”,它的核心目标就是以用户为中心,实现精准传播、精准营销和精准服务。
今年中关村大数据日关注的一个重点是,以大数据的思维、技术、模式、产品、服务等突破行政藩篱和区域界线,而由方正电子承办的此次传媒大数据分论坛则体现了整个业界针对传媒大数据领域的更多探索。无论如何,大数据时代已经来临,并在加速影响着各行各业的产业转型与变革。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01