
一、概念(分析-均值比较-单因素方差分析):
按照单因子变量(自变量)生成对定量因变量的单因素方差分析。方差分析用于检验数个均值相等的假设。这种方法是双样本t 检验的扩展。除了确定均值间存在着差值外,您可能还想知道哪些均值之间存在着差值。比较均值有两类检验方法:先验对比和两两比较检验。对比是在试验开始前进行的检验,而两两比较检验则是在试验结束后进行的。您也可以检验各个类别的趋势。
二、假设:(多个总体均值是否相等的假设检验问题)
每个组是来自正态总体的独立随机样本。尽管数据应对称,但方差分析对于偏离正态性是稳健的。各组应来自方差相等的总体。为了检验这种假设,请使用Levene的方差齐性检验。多个总体均值是否相等的假设检验问题。原假设:组内均值(组内离差平方和)=组间均值(组间离差平方和)
三、满足条件:
1、在各个水平之下观察对象是独立随机抽样,即独立性;2、各个水平的因变量服从正态分布,即正态性;3、各个水平下的总体具有相同的方差,即方差齐;
四、多项式(分析-均值比较-单因素方差分析-对比)
1、多项式。将组间平方和划分成趋势成分。可以检验因变量在因子变量的各顺序水平间的趋势。例如,您可以检验各个顺序级别的最高工资水平间的线性趋势(上升或下降)。
◎度。可以选择1 度、2 度、3 度、4 度或5 度多项式。
2、系数。用户指定的用t 统计量检验的先验对比。为因子变量的每个组(类别)输入一个系数,每次输入后单击添加。每个新值都添加到系数列表的底部。要指定其他对比组,请单击下一个。用下一个和上一个在各组对比间移动。
五、假定方差齐性(分析-均值比较-单因素方差分析-两两比较)
1、LSD(Least-significant difference):最小显著差数法, 用t检验完成各组均值间的配对比较。
2、Bonferroni(LSDMOD)用t检验完成各组间均值的配对比较,但通过设置每个检验的误差率来控制整个误差率。
3、Sidak:计算t统计量进行多重配对比较。可以调整显著性水平,比Bofferroni方法的界限要小。
4、Scheffe:用F分布对所有可能的组合进行同时进入的配对比较。此法可用于检查组均值的所有线性组合,但不是公正的配对比较。
5、R-E-G-W F:基于F检验的Ryan-Einot-Gabriel-Welsch多重比较检验
6、R-E-G-W Q:基于Student Range分布的Ryan-Einot-Gabr iel-Welsch range test多重配对比较。
7、S-N-K:用Student Range分布进行所有各组均值间的配对比较。
8、Tukey:用Student-Range统计量进行所有组间均值的配对比较,用所有配对比较误差率作为实验误差率。
9、Tukey’s-b: 用stndent Range分布进行组间均值的配对比较,其精确值为前两种检验相应值的平均值。
10、Duncan:指定一系列的Range值,逐步进行计算比较得出结论。
11、Hochberg‘s GT2:用正态最大系数进行多重比较。
12、Gabriel:用正态标准系数进行配对比较,在单元数较大 时,这种方法较自由。
13、Waller-Dunca:用t统计量进行多重比较检验,使用贝叶斯逼近的多重比较检验法。
14、Dunnett:多重配对比较的t检验法,用于一组处理对一个控制类均值的比较。默认的控制类是最后一组。
六、未假定方差齐性(分析-均值比较-单因素方差分析-两两比较)
1、Tamhane’s T2:基于t检验进行配对比较。
2、Dunnett’s T3:基于Student最大模的成对比较法。
3、Games-Howell:Games-Howell比较,该方法较灵活。
4、Dunnett’s C:基于Student极值的成对比较法。
七、统计量(分析-均值比较-单因素方差分析-两两比较-选项)
1、描述性。计算每组中每个因变量的个案数、均值、标准差、均值的标准误、最小值、最大值和95% 置信区间。
2、固定和随机效果。显示固定效应模型的标准差、标准误和95% 置信区间,以及随机效应模型的标准误、95% 置信区间和成分间方差估计。
3、方差同质性检验。计算Levene 统计量以检验组方差是否相等。该检验独立于正态的假设。
4、Brown-Forsythe。计算Brown-Forsythe 统计量以检验组均值是否相等。当方差相等的假设不成立时,这种统计量优于F 统计量。
5、Welch。计算Welch 统计量以检验组均值是否相等。当方差相等的假设不成立时,这
种统计量优于F 统计量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14