
大数据下民意形态与协商民主
互联网时代把人类社会带入了以“PB”(1PB=1024TB)为单位的大数据时代。在大数据时代下,民意形态悄然发生了以下三重变迁。
民意测量:从样本转向总体
恩格斯认为,“历史是这样创造的:……有无数互相交错的力量,有无数个力的平行四边形,由此就产生出一个合力,即历史结果……每个意志都对合力有所贡献”。对每个个体独特历史价值的认识,构成协商民主最基本的理论渊源。正是基于协商民主的纽带,微观个体才得以平等地融入政治系统与政府治理流程。细微的利益诉求和意志表达,通过协商民主场域无时无刻的讨论、互动等输出为民主的政治选择与科学的公共政策。在工业时代的民主协商中,原子化的分散公民个体直接面对权力机器,并等待着权力有选择地抽取而进入协商场域。而在大数据时代下,网络悄然赋予普罗大众一种特殊的“解构”工具,原子化个体可以低成本甚至零成本联合起来,发出日益响亮的声音。
对于如何获取民意,小数据时代基于调查小数据的量化统计分析方法,曾具有数据调查与数据分析的显著优势,往往采取抽样方式,以最少样本数据获得最多民意信息。但是,在大数据时代,样本=总体。因为调查数据的优势逐渐丧失,大数据分析不再满足于基于抽样的民意调查。而相比于小样本数据,大数据具有巨大的数据选择空间,可以多维度、多视角地进行数据分析。大数据是信息网络记录和量化的数据,并能更为真实地体现民意,因为它不是来源于数据收集,而是忠实于数据记录。数据记录主要存在三种来源:互联网、社交网络、传感器。大数据的自动记录将碎片化民意信息综合化,形成系统、综合化、动态、可视化的整体民意信息,从而为更民主、更科学的决策奠定了更为坚实的民意基础。
大数据时代,可以通过一系列测量技术来获取民意大数据,并通过云计算,使其趋于指数化与可视化。大数据分析基于总体样本,将碎片化民意信息整合起来,形成系统民意,并且进一步利用网络图形学技术,通过多元化、多维图形显示方法,来描述大数据及其代表的民意变迁。我国国内主流网络媒体(如百度指数、新浪微博指数、天涯指数)已通过指数分析、可视化对民意大数据进行数据挖掘。在大数据网络平台上,个体不再以分散化方式进行微弱的话语表达,而是借助于网络工具将微弱的话语表达转化为大数据的数据形式,并通过网络云计算汇聚成为响亮的民意,融入权力行使的所有环节。
大数据下中国特色协商民主创新
阿尔文·托夫勒将社会发展图式归纳为农业社会第一次浪潮、工业社会第二次浪潮、信息社会第三次浪潮的起伏推进。在信息文明时代,数字协商民主已成为竞争高地。协商民主已经不单纯是权力主导型协商的独奏,而是三重领域协商民主的协奏。
第一领域:权力主导型协商。中国协商民主脉络经历了群众路线—政治协商—协商民主—数字协商民主,从而形成了一种既体现中国传统文化精粹,又具有基于主体间性的“交往—行动”的现代协商民主精神。第二领域:网络自协商民主。大数据网络构成了第二领域网络自协商的空间。网络秩序可借助于虚拟空间的自约束、自协商、自组织。在网络自治空间中,虚拟公决、虚拟裁判、网络集体行动的运作,应以网络公约为准绳,以公民权利为底线,以网民理性审查为保障,通过相互制衡实现网络自秩序。第三领域:数字协商民主。这一领域的协商民主是权力主导型协商与网络自协商通过交融与互嵌而形成的新型数字民主平台。数字协商民主融入权力流程的所有环节。
虚拟空间将现实空间主客体结构转化为两维扁平交往结构。数字协商民主需相应建立扁平化国家—网络间信息协商通道。信息社会与大数据时代背景下,数字协商民主作为一种有限而宝贵的资源,不能同量同质地平均分配,而应与网络凝聚群相适应,重点对网络意见领袖进行网络吸纳,并通过网络意见领袖为中心的社会网络向各节点传播,从而以最低成本实现数字协商民主。
大数据时代协商民主体制需具备三种核心能力:整合大数据的能力、协商民主与大数据的融合能力、协商民主的网络吸纳能力。
第一种能力:整合大数据的能力。在大数据时代,政府不但可以点对点的传统协商方式获取民意,而且可以通过大数据收集、数据挖掘、数据分析,探索并分析大数据背后的社会民意。第二种能力:协商民主与大数据的融合能力。大数据技术正成为数字协商民主的润滑剂与加速器。人民当家作主的宏大理论借助大数据信息流,使无数个体的细微话语嵌入国家治理流程各环节,“民有”的人民主权理想正踏踏实实地着陆为民治的实践。协商民主体制与大数据的融合,将进一步提升中国协商民主的制度化水平。第三种能力:协商民主的网络吸纳能力。政府基于大数据民意,通过数字协商与网络民意吸纳,使网民能参与政策议程的创建、政策方案选择、政策执行,从而化解潜在冲突,强化公共政策合法性,并为政策执行创造良好生态环境。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03