京公网安备 11010802034615号
经营许可证编号:京B2-20210330
P2P网贷平台想搭大数据快车,这三个问题至关重要
由于互联网思维的影响,互金圈一直都有追逐“潮流”的习惯。随着互联网渗透率到达高位,流量红利也逐渐消失,大数据概念便开始在圈内被热炒。由此也便引发了各种公司与大数据搭界的情况,以此挖掘大数据的价值潜力。
也正是由于大数据有很大的商业价值,很多的公司才会进行挖掘,而这些公司在大数据方面有三个共性:
首先,开创了一个大数据获取的场景,或者说其商业模式本身就有“众包”优势;【众包:一个公司或机构把过去由员工执行的工作任务,以自由自愿的形式外包给非特定的(而且通常是大型的)大众网络的做法。】
其次,拥有通过海量数据“获取真相”的能力。在突破建立众包场景或渠道的门槛后,大家同样拥有了海量元数据,此时可以通过定量模型或经验模型从中提取“真相”;
再者,将得到的“真相”变现。通过资产配置或其他方式,在执行层面由“真相”替代原有的推演,让大数据解决了“做什么”、“怎么做”的问题,而没有纠缠在“为什么”的层面。
所以说,大数据还是有很多的优势的,可以置换掉时间和逻辑都比较长且复杂的过程。那么P2P网贷平台想要玩大数据靠谱吗?P2P网贷平台要想进入大数据领域,要先仔细考虑这三个问题:
第一,大数据“变现”前,有没有做好定位?
如果用大数据做运营,你有没有足够维度的投资人行为偏好数据?有没有在水平层面上做交叉分析?如果用大数据做风控,你的数据维度与你的资产类型是否匹配?或者用大数据来做产品,或大数据本身是产品,不同的位置需要考虑不同的打法。初步定为之后要深入下去围绕这个核心做一系列的工作。
第二,有没有找到或者成为一个合适的数据众包场景?
在P2P网贷平台,第一类通过合作方式获得数据的,不将大数据本身作为产品变现。在众包的选择上是否做到的准确且迅速?选择小贷公司或者地方征信公司作为众包的P2P平台,有没有做地域上,行业上的交叉分析?这些数据本身是静态的还是动态的,能不能在将来支撑你的风控模型变量地调整?再比如第二类,自己作为众包入口,收集多维度投资人数据,再运用到运营或其他层面,或者作为数据产品变现的平台。也至少需要考虑行业内数据的交叉分析,不然得出的结论并没有太大意义。
第三,在大规模执行从大数据中得到的“真相”之前,有没有充分考虑可能造成数据表现异常的情况?是否进行过试错?
大数据和模型的优势不是替你做决策,这些只是辅助做决策的工具。要抓住这个工具,用它去做事情,而不是让这个工具替你做事情,依靠但不依赖才是正解。
比如,某P2P平台使用10月份的投资人行为数据分析,结果发现85-90后投资人当月投资金额有显著下滑,得出结论下个月要针对这个年龄区间的投资人进行集中推广活动。在这个决策过程中,平台完全没有对数据可靠性进行判断,在面对时间区间较短,量大的数据时,要考率会造成大范围影响的事件或者活动。
所以说,大数据解决的是相关性问题,但不回答因果关系,所以只能是优化、简化决策过程。在大数据概念“当红”之际,P2P网贷平台想要抢占市场,确立市场认知是很重要,应当减少表面现象,注重钻研,让大数据帮助平台成长才是真正的目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27