京公网安备 11010802034615号
经营许可证编号:京B2-20210330
社会治理精准化 需要大数据思维
随着互联网特别是移动互联网发展,社会治理模式正在从单向管理转向双向互动,从线下转向线上线下融合,从单纯的政府监管向更加注重社会协同治理转变。“三个转变”凸显了“互联网+”形势下社会治理的新思路和基本方向。国务院印发的《促进大数据发展行动纲要》也提出,推动大数据发展和应用,打造精准治理、多方协作的社会治理新模式。因此,我们要深刻认识大数据在社会治理中的作用,不断强化大数据思维,重视大数据的作用,利用大数据扁平化、交互式、快捷性的优势,推进社会治理精准化。
随着信息技术与经济社会的交汇融合,大数据已经成为信息时代的基础资源,能有效集成国家经济、政治、文化、社会、生态等方面的信息资源。在社会治理中充分运用大数据分析提供的规律性结论,不仅有利于形成系统完备、科学规范、运行有效的治理体系,而且还能为社会治理提供决策支撑。
一
当前,我国经济社会发展进入新常态,社会治理面临新挑战和新机遇。
从挑战方面看,工业化、城镇化、信息化加速推进,城乡发展不平衡、区域发展不协调问题较为突出,大量“单位人”转变为“社会人”,大量常住人口变成流动人口,社会结构和利益格局发生深刻变化,传统的治理模式面临严峻挑战。与此同时,群众需求也随着物质生活条件逐步改善,特别是互联网、大数据广泛运用,人民群众对政务服务、民生保障的需求呈现出个性化、多样化的新特点,对服务的体验感、参与感、精准化提出更高要求。社会治理面临一些全新课题。
从机遇方面看,创新社会治理,是我国应对社会转型、化解社会矛盾、协调利益关系所面临的一项重大战略任务。针对目前社会治理领域普遍存在的一些问题,大数据技术通过对海量数据的快速收集与挖掘、及时研判与共享,成为支持社会治理科学决策和准确预判的有力手段,为转型期的社会治理带来了新机遇。未来,基于大数据的科学决策、精细管理、精准服务将成为常态,将大大推动社会治理模式进步,推进法治政府、创新政府、廉洁政府、智慧政府和服务型政府建设。
从国际视野看,美国、欧盟、日本等发达国家已经布局大数据战略,他们利用大数据形成新的经济增长业态和板块,更为重要的是,他们开始从战略层面认识大数据,在社会治理领域融入大数据思维,利用大数据技术系统逐步改造传统国家治理手段和治理体系。我们也要顺应时代发展趋势,充分利用大数据提升社会治理水平。
二
当前和今后一个时期,用大数据思维推进社会治理精准化,要在以下几方面下功夫:
完善大数据基础设施建设是基础。大数据时代,社会治理所需的数据和信息迅速增长,各项社会建设工作的开展、各种社会治理方式的创新和各种公共服务的提供都需要大量的基础数据与信息。如果没有掌握大量的基础数据与信息或者掌握的信息与数据不及时更新,决策者就难以真正及时了解社会的各种需求,也无法规划和选择合理的提供服务的路径与方式。因此,应建立全面覆盖、动态跟踪、指标齐全的社会治理基础信息平台,以人口基础信息为核心,借助居住信息系统、就业登记信息系统和房屋出租管理系统,整合违法犯罪信息、网络舆情信息、公共卫生信息、环境状况信息、劳资关系信息、突发事件信息等多种信息源和社会统计资源,提高新形势下社会治理信息化水平。
数据安全与数据深度应用是关键。技术往往是一把双刃剑。大数据的收集和使用可能涉及国家信息安全和公民隐私等,需要在立法层面明确大数据采集和使用的原则。要权衡数据开放与个人隐私和商业秘密保护、国家信息安全与社会数据需求之间的关系,制定严格规范的数据采集、储存、处理、推送和应用流程。要在技术上通过信息系统的软硬件投入来保障信息安全。大数据平台本身的安全性也应引起重视,需要国家相关部门制定大数据技术标准和运营规范,重视大数据及信息安全体系建设,加强对重点领域敏感数据的监管。要充分重视数据和信息在采集、应用过程中的制度建设。需要注意的是,数据的应用开放共享必须有边界、有规则、有步骤,并根据相关法律和约定对开放对象数据使用情况进行监管,从而实现数据开放需求、隐私保护需求和安全保障需求之间的平衡。数据的开放和流动、使用和共享,能进一步降低治理成本、提高治理效率,从而进一步提升治理的效能。
转变政府职能是保障。大数据时代社会治理方式创新必须转变政府职能,建设服务型政府,充分运用大数据系统,提升政府便民服务水平,提高政府行政管理效能。随着信息技术的发展,每个社会成员均可利用信息化手段表达自己的意愿和看法,形成海量的“微数据”和“微事件”。决策者往往要对海量的实时数据进行掌握和挖掘,将分散的小概率事件有序关联起来,突破“信息孤岛”限制,排除各种垃圾信息的误导和干扰,把握数据中蕴含的规律性、倾向性问题,提高公共决策的科学化水平,更好地回应公众关切,满足公众需求和期待。如,可以借助热力图直观显示不同区域居民需求的分布情况,便于掌握居民诉求的变化;也可以单位时间内的出现频率为依据,通过主动搜索等方式追踪热词,进而确定社会热点问题,实现将大数据分析、追踪、预测的成果转化为决策者的重要参考,及时发现、预防和控制社会事件的发生,等等。与此同时,通过全面联网,充分调动各方面积极性,在及时解决居民生活和工作难题的同时,推进社会主体积极参与社会治理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20