京公网安备 11010802034615号
经营许可证编号:京B2-20210330
最优尺度回归分析_SPSS统计分析案例
1、什么是最优尺度回归?
英文简称CATREG,也称分类回归。 普通线性回归对数据的要求十分严格,当遇到分类变量时,线性回归无法准确地反映分类变量不同取值的距离,比如性别变量,男性和女性本身是平级的,没有大小、顺序、趋势区分,若直接纳入线性回归模型,则可能会失去自身的意义。
最优尺度回归就是为了解决类似问题,它擅长将分类变量不同取值进行量化处理,从而将分类变量转换为数值型进行统计分析。可以说有了最优尺度回归方法,将大大提高分类变量数据的处理能力,突破分类变量对分析模型选择的限制,扩大回归分析的应用能力。
2、案例数据:
某品牌服装为了解消费者对本品牌满意度情况,通过调查问卷收集到消费者的年龄、性别、月收入以及满意度等数据。其中年龄包括七个年龄段,性别为男女二分类水平,月收入包括(无收入、低档、中等、高档)四个取值水平,满意度分为(不满意、一般、满意)三档水平。根据数据情况来看,影响品牌满意度的自变量均是分类变量,普通线性回归方法无法胜任,适合采用最优尺度回归方法进行分析。
3、SPSS菜单参数设置(主要参数)
案例数据包括4个变量,因变量为满意度,性别、年龄、月收入作为自变量。
第一步:打开主菜单。
在SPSS数据视图下,在菜单栏中选择【分析】【回归】【最优尺度】选项,调出SPSS分类回归主菜单界面。
第二步:定义尺度。
为因变量和所有自变量指定最合适的测度类别。首先从左侧的变量栏中选择“满意度”,按箭头按钮方向移入因变量框内,选中底部的“定义尺度”按钮,打开相应对话框,因为满意度的3个取值水平是代表着满意程度,含有次序信息,因此选择“有序”单选按钮,完成对因变量的最优尺度定义。
相似的,将3个自变量移入自变量框内,性别定义为名义尺度,年龄定义为有序尺度,月收入定义为有序尺度。
第三步:其他参数设置
此时直接点击主菜单下的“确定”按钮,即可执行最优尺度回归过程,其他参数接受SPSS软件的默认设置。为了得到更多直观的结果,有必要设置更多参数。本案例主要设置【图】按钮菜单里的参数。
打开【分类回归:图】按钮菜单,将所有变量移入右侧的转换图框内,要求软件输出原分类变量各取值经最优尺度变换后的数值对应图。
4、主要结果解读
(1)模型摘要表
最优尺度回归模型拟合性能,主要看调整的R方,该指标反映模型拟合效果,本例调整R方值偏低,说明模型对变量总变异的解释能力不足,不适合大规模推广。
(2)方差分析表
回归模型的统计学意义,主要看sig值,本例0.006,小于显著性水平临界值0.05,说明模型显著,具有统计学意义。
(3)回归系数表
本次回归模型中3个自变量的系数表,直接看显著性值,发现在5%置信度下,月收入因素对模型的影响并不显著,年龄和性别两个因素对模型均有显著统计学意义。
(4)变量最优尺度转换图
这项结果主要是看整个分析过程中分类变量是如何转换为标准数值尺度的,是一个过程性的结果,并非关键结果。
因变量满意度是按照有序尺度转换的,此时可以看出转换后2-3之间的距离大于1-2,而并非此前等间隔距离,软件自动为其计算了最优的量化标准。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27