
大数据和深度学习有什么区别
都是 data-driven 的模型,都是学习一种更加 abstract 的方式来表达特定的数据,假设和模型都对特定数据广泛适用。好处是,这种学习出来的表达方式可以帮助我们更好的理解和分析数据,挖掘数据隐藏的结构和关系。
简单来说:
1)深度学习(Deep Learning)只是机器学习(Machine Learning)的一种类别,一个子领域。机器学习 > 深度学习
2)大数据(Big Data)不是具体的方法,甚至不算具体的研究学科,而只是对某一类问题,或需处理的数据的描述
具体来说:
1)机器学习(Machine Learning)是一个大的方向,里面包括了很多种 approach,比如 deep learning, GMM, SVM, HMM, dictionary learning, knn, Adaboosting...不同的方法会使用不同的模型,不同的假设,不同的解法。这些模型可以是线性,也可以是非线性的。他们可能是基于统计的,也可能是基于稀疏的....
不过他们的共同点是:都是 data-driven 的模型,都是学习一种更加 abstract 的方式来表达特定的数据,假设和模型都对特定数据广泛适用。好处是,这种学习出来的表达方式可以帮助我们更好的理解和分析数据,挖掘数据隐藏的结构和关系。
Machine Learning 的任务也可以不同,可以是预测(prediction),分类(classification),聚类(clustering),识别(recognition),重建(reconstruction),约束(regularization),甚至降噪(denoising),超分辨(super-resolution),除马赛克(Demosaicing)等等....
2)深度学习(Deep Learning)是机器学习的一个子类,一般特指学习高层数的网络结构。这个结构中通常会结合线性和非线性的关系。
Deep Learning 也会分各种不同的模型,比如 CNN, RNN, DBN...他们的解法也会不同。
Deep Learning 目前非常流行,因为他们在图像,视觉,语音等各种应用中表现出了很好的 empirical performance。并且利用 gpu 的并行运算,在模型相当复杂,数据特别大量的情况下,依然可以达到很理想的学习速度。
因为 Deep Learning 往往会构建多层数,多节点,多复杂度的模型,人们依然缺乏多里面学习的结构模型的理解。很多时候,Deep Learning 甚至会被认为拥有类似于人类神经网络的结构,并且这种类似性被当做 deep learning 居然更大 potential 的依据。但答主个人认为,其实这略有些牵强...听起来更像是先有了这种 network 的结构,再找一个类似性。当然,这仅仅是个人观点...(私货私货)
3)大数据(Big Data,我们也叫他逼格数据....)是对数据和问题的描述。通常被广泛接受的定义是 3 个 V 上的“大”:Volume(数据量), Velocity(数据速度)还有 variety(数据类别)。大数据问题(Big-data problem)可以指那种在这三个 V 上因为大而带来的挑战。
Volume 很好理解。一般也可以认为是 Large-scale data(其实学术上用这个更准确,只是我们出去吹逼的时候就都叫 big data 了...)。“大”可以是数据的维度,也可以是数据的 size。一般 claim 自己是 big-data 的算法会比较 scalable,复杂度上对这两个不敏感。算法和系统上,人们喜欢选择并行(Parallel),分布(distributed)等属性的方法来增加 capability。
Velocity 就是数据到达的速度。对于数据高速到达的情况,需要对应的算法或者系统要有效的处理。而且数据在时间上可能存在变化,对应的算法或者系统居然做出调整和即时判断,以适应新的数据。这就要求我们提出高效(Efficiency),即时(real-time),动态(dynamic),还有有预测性(predictive)等等....
Variaty 指的是数据的类别。以往的算法或者系统往往针对某一种已知特定类别的数据来适应。而一般大数据也会指针对处理那些 unstructured data 或者 multi-modal data,这就对传统的处理方法带来了挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28