
反洗钱的未来一定是大数据分析
中国的银行、金融机构以及准金融机构(以下统称金融机构),在涉及到跨境资金转移的时候,会面临着更加严格的反洗钱以及反资助恐怖分子(以下统称反洗钱)的合规监管。
在继续往下聊合规监管这个问题时,我们似乎有必要区分一下反洗钱不合规与洗钱犯罪的区别,如果一个金融机构明知(甚至应当知道)其所服务的客户有洗钱行为,仍然为其提供便利,进而达到了掩饰、隐瞒非法收入的来源和性质这样一个可以洗钱罪入刑的程度,那么这个金融机构就是在实施犯罪行为而非我们所说的合规问题了。当一个律师在讨论“知道”或者“应当知道”这个问题时,合规问题可能要升级到刑事责任问题了。
传统的反洗钱合规管理工具,比如关联性的数据库管理体系(Relational Database Management System),已经不能够满足现代金融业的反洗钱合规需求,尤其是在一个金融机构涉及到跨境资金转移时,传统的反洗钱合规管理工具更是显得“捉襟见肘”。首先,参与到境外交易的金融机构所涉及的数据量被显著地放大;第二,金融机构面临着多语种的语言转换,从而加大了反洗钱的合规难度;第三,原来看似不是那么重要的一些反洗钱合规需求(比如反资助恐怖分子的合规需求)一旦涉及境外交易就会变得急迫起来;第四,外国监管机构的监管要求可能比国内的监管要求更加严格,导致很多金融机构不适应。解决这些问题的更好的方法,换言之,升级合规管理体系来应对更严格的反洗钱合规义务,比较好的解决方案可能就是大数据分析。
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为5个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)、真实性(Veracity)。大数据作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据商业价值的利用逐渐成为行业人士争相追捧的利润“焦点”。随着大数据时代的来临,大数据分析也应运而生。我们通过本文来看一看金融机构针对反洗钱合规的大数据分析有什么特点。
首先,得花钱投资来收集和储存客户数据
收集并储存客户数据当然会有成本支出。为了满足监管需求,金融机构必须要收集并储存能够满足监管需求的合规数据,但是这些合规数据对于大数据分析来说可能还不够,一个金融机构应当考虑进一步细化它能从客户那里所收集的数据-——有的金融机构已经考虑在收集自然人客户的声音,作为声纹数据收集保存起来。
进一步细化客户的数据貌似吃力不讨好,其实,这些金融机构所收集到的数据也是资产,可以让金融机构朝着定制化的方向更加精准地研发以及提升服务产品来匹配客户的需求,从而起到“一石二鸟”的作用。
其次,数据仪表化
数据仪表化是指把那些与合规管理相关的数据通过人性化的、一看就懂的仪表盘的方式予以展示,从而实现人机对话。
第三,数据去重(Deduplication)
数据会重复,所以要去重,从而能够节省数据储存空间及费用,并提高大数据分析的实时性、有效性。
数据去重对于反洗钱来说还有一个非常实际的效用,那就是能够发现一个涉嫌洗钱的公司或者个人是否开了多个账户从而方便洗钱。
第四,数据来自于多个渠道
大数据分析除了我们前面所说的数据量大之外,还体现在数据来源广泛。就一个客户而言,如果针对它、他或她的数据来自于多个渠道,且这些渠道本身的差异化巨大,那么其分析和挖掘出来的结果才会形成这个客户的全息图景,从而更加真实并具有前瞻性。
为了让数据量足够大,一个金融机构也许还得向其他第三方去调取数据。所以应当有串联系统,把各个不同的数据库的数据串联起来进行分析。
最后,向人工智能演变
人工智能,相对于一个数据分析平台而言,具有自我学习、纠错、成长的功能。大数据分析再加上日益现代化的分析技术就会使得大数据分析朝着人工智能的方向发展,从而使得大数据分析能够更加精准地管控洗钱风险。
总之,大数据分析对于一个金融机构的反洗钱合规而言是“最佳实践”(Best practice),其实对于一些其他银行及金融机构的业务(比如信贷风控)而言也是如此。这个最佳实践还可以应用到其他行业的其他应用(比如任何行业的客户营销、贿赂风险与欺诈风险防范)。从这个角度讲,大数据分析岂止是反洗钱的未来?它一定也是银行业甚至其他行业的未来!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27