
机器学习算法的随机数据生成
在学习机器学习算法的过程中,我们经常需要数据来验证算法,调试参数。但是找到一组十分合适某种特定算法类型的数据样本却不那么容易。还好numpy, scikit-learn都提供了随机数据生成的功能,我们可以自己生成适合某一种模型的数据,用随机数据来做清洗,归一化,转换,然后选择模型与算法做拟合和预测。下面对scikit-learn和numpy生成数据样本的方法做一个总结。
1. numpy随机数据生成API
numpy比较适合用来生产一些简单的抽样数据。API都在random类中,常见的API有:
1) rand(d0, d1, …, dn) 用来生成d0xd1x…dn维的数组。数组的值在[0,1]之间
例如:np.random.rand(3,2,2),输出如下3x2x2的数组
array([[[ 0.49042678, 0.60643763],
[ 0.18370487, 0.10836908]],
[[ 0.38269728, 0.66130293],
[ 0.5775944 , 0.52354981]],
[[ 0.71705929, 0.89453574],
[ 0.36245334, 0.37545211]]])
2) randn((d0, d1, …, dn), 也是用来生成d0xd1x…dn维的数组。不过数组的值服从N(0,1)的标准正态分布。
例如:np.random.randn(3,2),输出如下3×2的数组,这些值是N(0,1)的抽样数据。
array([[-0.5889483 , -0.34054626],
[-2.03094528, -0.21205145],
[-0.20804811, -0.97289898]])
如果需要服���$N(\mu,\sigma^2)$的正态分布,只需要在randn上每个生成的值x上做变换$\sigma x + \mu $即可,例如:
例如:2*np.random.randn(3,2) + 1,输出如下3×2的数组,这些值是N(1,4)的抽样数据。
array([[ 2.32910328, -0.677016 ],
[-0.09049511, 1.04687598],
[ 2.13493001, 3.30025852]])
3)randint(low[, high, size]),生成随机的大小为size的数据,size可以为整数,为矩阵维数,或者张量的维数。值位于半开区间 [low, high)。
例如:np.random.randint(3, size=[2,3,4])返回维数维2x3x4的数据。取值范围为最大值为3的整数。
array([[[2, 1, 2, 1],
[0, 1, 2, 1],
[2, 1, 0, 2]],
[[0, 1, 0, 0],
[1, 1, 2, 1],
[1, 0, 1, 2]]])
再比如: np.random.randint(3, 6, size=[2,3]) 返回维数为2×3的数据。取值范围为[3,6).
array([[4, 5, 3],
[3, 4, 5]])
4) random_integers(low[, high, size]),和上面的randint类似,区别在与取值范围是闭区间[low, high]。
5) random_sample([size]), 返回随机的浮点数,在半开区间 [0.0, 1.0)。如果是其他区间[a,b),可以加以转换(b – a) * random_sample([size]) + a
例如: (5-2)*np.random.random_sample(3)+2 返回[2,5)之间的3个随机数。
array([ 2.87037573, 4.33790491, 2.1662832 ])
2. scikit-learn随机数据生成API介绍
scikit-learn生成随机数据的API都在datasets类之中,和numpy比起来,可以用来生成适合特定机器学习模型的数据。常用的API有:
1) 用make_regression 生成回归模型的数据
2) 用make_hastie_10_2,make_classification或者make_multilabel_classification生成分类模型数据
3) 用make_blobs生成聚类模型数据
4) 用make_gaussian_quantiles生成分组多维正态分布的数据
3. scikit-learn随机数据生成实例
3.1 回归模型随机数据
这里我们使用make_regression生成回归模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数),noise(样本随机噪音)和coef(是否返回回归系数)。例子代码如下:
输出的图如下:
3.2 分类模型随机数据
这里我们用make_classification生成三元分类模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数), n_redundant(冗余特征数)和n_classes(输出的类别数),例子代码如下:
输出的图如下:
3.3 聚类模型随机数据
这里我们用make_blobs生成聚类模型数据。几个关键参数有n_samples(生成样本数), n_features(样本特征数),centers(簇中心的个数或者自定义的簇中心)和cluster_std(簇数据方差,代表簇的聚合程度)。例子如下:
输出的图如下:
3.4 分组正态分布混合数据
我们用make_gaussian_quantiles生成分组多维正态分布的数据。几个关键参数有n_samples(生成样本数), n_features(正态分布的维数),mean(特征均值), cov(样本协方差的系数), n_classes(数据在正态分布中按分位数分配的组数)。 例子如下:
输出图如下
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28