京公网安备 11010802034615号
经营许可证编号:京B2-20210330
正确看待大数据
最近几年,随着大数据的发展,对快速创新的需求越来越高,导致他们之间的关系更加紧张。
这些发展为企业带来了巨大的商机。相应的,首席信息官(CIO)面临的压力也越来越大,他们要为企业提供必要的工具和过程,实现大数据策略,从而激发新灵感,捕获市场商机。
大数据的关键在于它能够促进您做出更好的业务决策,并及时实现。通过挖掘您公司的数据,您将从根本上改变企业运行方式,掌控好大股东们所期望的变革历程。CIO应知道数据是怎样推动变革的。今天,研究数据并找到方法将其变为商业价值,这是对您能力的一种历练。
当然,这说起来容易做起来难,对有些人而言,这是令人畏惧难以完成的任务。过去十年中,企业要处理的信息量呈指数增长。难道真有这么多的非结构化数据?云技术真能控制并调整适应这么大的数据量 我们应采取什么样的策略使我们能够更智能的使用数据?我们怎样保证一切都安全?
很多CIO不愿意去研究大数据结构——他们担心会迷失其中,找不到需要的东西,见不到成效。但实话实说,他们不用害怕大数据,而是要以正确的方式去探求。
业界一直对分析技术有误解——人们仍然认为在把数据分解开之前,不会知道他们能发现什么。实际不是这样。在很多早期案例中,您的确知道自己需要什么。可能是要求提高质量或者效率,也可能是降低成本或者风险。明确自己到底要什么,会有助于您获得所需的信息,知道到哪里去找这些信息,更重要的是,这些信息对您的企业是否适用。这也说明了您的投入是否合理。
请记住,要充分发挥数据的效益,不仅仅是采集、存储和处理信息。还涉及到综合考虑云、网络和安全,以便建立混合IT环境。
对于要推动数字企业变革的CIO而言,除了大数据,网络空间安全也是最重要的议事日程。网络攻击在不断扩散,考虑到公司损失机密数据的严重性,再也不能采用那种东拼西凑临时应对的安全方法。因此,为实现企业安全,您不能把网络空间安全看成是‘锁上,拿好钥匙’这么简单,只关注把威胁拒之门外。不可避免的是,随着时间的推移,每一家企业都会经历安全事件。要有勇气接受这些事实,并相应的进行规划。
当然,大数据带来了新的安全问题。与普通应用程序所产生的企业信息相比,大数据的非结构化特性的确使其更容易受到安全破坏。
非结构化数据让安全专家们非常紧张。这是因为它并没有被打上‘标签’,说明它有风险指标或者属于某类风险,而且还不清楚它对于企业的价值所在。结果是,它还不能体现在您企业的管理策略中,仍然是安全措施的一个薄弱环节。数据是以非结构化的方式流入企业,因此,更大的风险在于这可能含有恶意内容。
尽管事实如此,CIO不应该让安全相关问题成为大数据发展的拦路虎。
企业目前在安全上仅投入了大约7%的数据预算。这表明,他们可能和过去一样掉入同样的安全陷阱中。安全解决方案不应该在事后才“拧到”您购买的新解决方案上,而应该内置到解决方案中。安全从一开始就应该是大数据方案的组成。
CIO应考虑采取措施,采用可自行支配的工具,让大数据更安全。这会涉及到文件级和数据库级监视,从而要求加强管理,才能应对监视应用程序所产生的报警。
例如,可能会要求采用第三方提供的托管安全服务,处理额外的工作负载,以保证大数据安全的一致性和响应能力。而重要的是,与安全服务提供商合作,理解大数据会对数据中心和网络环境产生更广泛的影响,获得相关的集成能力、专业知识、供应商关系,以及全球布局,从而满足您企业的需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29