
正确看待大数据
最近几年,随着大数据的发展,对快速创新的需求越来越高,导致他们之间的关系更加紧张。
这些发展为企业带来了巨大的商机。相应的,首席信息官(CIO)面临的压力也越来越大,他们要为企业提供必要的工具和过程,实现大数据策略,从而激发新灵感,捕获市场商机。
大数据的关键在于它能够促进您做出更好的业务决策,并及时实现。通过挖掘您公司的数据,您将从根本上改变企业运行方式,掌控好大股东们所期望的变革历程。CIO应知道数据是怎样推动变革的。今天,研究数据并找到方法将其变为商业价值,这是对您能力的一种历练。
当然,这说起来容易做起来难,对有些人而言,这是令人畏惧难以完成的任务。过去十年中,企业要处理的信息量呈指数增长。难道真有这么多的非结构化数据?云技术真能控制并调整适应这么大的数据量 我们应采取什么样的策略使我们能够更智能的使用数据?我们怎样保证一切都安全?
很多CIO不愿意去研究大数据结构——他们担心会迷失其中,找不到需要的东西,见不到成效。但实话实说,他们不用害怕大数据,而是要以正确的方式去探求。
业界一直对分析技术有误解——人们仍然认为在把数据分解开之前,不会知道他们能发现什么。实际不是这样。在很多早期案例中,您的确知道自己需要什么。可能是要求提高质量或者效率,也可能是降低成本或者风险。明确自己到底要什么,会有助于您获得所需的信息,知道到哪里去找这些信息,更重要的是,这些信息对您的企业是否适用。这也说明了您的投入是否合理。
请记住,要充分发挥数据的效益,不仅仅是采集、存储和处理信息。还涉及到综合考虑云、网络和安全,以便建立混合IT环境。
对于要推动数字企业变革的CIO而言,除了大数据,网络空间安全也是最重要的议事日程。网络攻击在不断扩散,考虑到公司损失机密数据的严重性,再也不能采用那种东拼西凑临时应对的安全方法。因此,为实现企业安全,您不能把网络空间安全看成是‘锁上,拿好钥匙’这么简单,只关注把威胁拒之门外。不可避免的是,随着时间的推移,每一家企业都会经历安全事件。要有勇气接受这些事实,并相应的进行规划。
当然,大数据带来了新的安全问题。与普通应用程序所产生的企业信息相比,大数据的非结构化特性的确使其更容易受到安全破坏。
非结构化数据让安全专家们非常紧张。这是因为它并没有被打上‘标签’,说明它有风险指标或者属于某类风险,而且还不清楚它对于企业的价值所在。结果是,它还不能体现在您企业的管理策略中,仍然是安全措施的一个薄弱环节。数据是以非结构化的方式流入企业,因此,更大的风险在于这可能含有恶意内容。
尽管事实如此,CIO不应该让安全相关问题成为大数据发展的拦路虎。
企业目前在安全上仅投入了大约7%的数据预算。这表明,他们可能和过去一样掉入同样的安全陷阱中。安全解决方案不应该在事后才“拧到”您购买的新解决方案上,而应该内置到解决方案中。安全从一开始就应该是大数据方案的组成。
CIO应考虑采取措施,采用可自行支配的工具,让大数据更安全。这会涉及到文件级和数据库级监视,从而要求加强管理,才能应对监视应用程序所产生的报警。
例如,可能会要求采用第三方提供的托管安全服务,处理额外的工作负载,以保证大数据安全的一致性和响应能力。而重要的是,与安全服务提供商合作,理解大数据会对数据中心和网络环境产生更广泛的影响,获得相关的集成能力、专业知识、供应商关系,以及全球布局,从而满足您企业的需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14