
数据分析的目的性越强,越有价值!
数据分析从功能角度来讲,无非就是两个。
1、有问题,通过数据分析寻找原因,制定决策。
2、有新项目、产品、方案要上线,或企业制定大决断,需要数据分析结论做辅助参考。
为什么强调数据分析的目的性?
数据分析的目的是整个研究方案的起点,决定着后续研究的内容,数据的来源,使用的方法。
目的不明确会导致方向性的错误,这里举两个歪例子。
场景A:
某电商双十一跟着淘宝做了一个大促活动,事后想了解活动的效果,于是找到了小王。
于是,小王开始收集数据、处理数据、建立模型、制作报表。最终得出结论:活动期间UV上涨了50%,订单增长了40%,销售额提高了45%云云。
场景B:
感觉最近的天猫的销售量有点低,做个分析看看是什么原因,该怎么做?
小王又开始发起洪荒之力,结合平台的流量数据,订单数据、用户数据,采用聚类分析、主成分分析、相关行分析等分析挖掘手段。发现男性群体的销售量明显下滑,需要提高对这类人群的引流。
以上两个场景,场景A虽然各项数据看上去都提高了,但是实际上该电商是做礼品的,他更需要知道双十一与其他各个节日活动效果的对比,只算了产出,未算计投入,结论和目的一样不清晰。场景B用到了很多算法,挖掘到某群体的变化,但实际上该电商在在该月的男装上新量显著减少,销量下降与季节的调整有关。
所以,以上两个案例,一个不细分研究目的,另一个不做目的性的引导,是分析失败的主要问题。业务不了解数据,数据不了解业务,这种衔接矛盾常常存在。
目的的面纱需要层层揭开
数据分析的目的往往不是那么明确,只是有个大致的方向,这个有时候业务员和领导也没有办法。所以做数据分析时要抖点机灵。
比如让你做一个用户行为分析,出一个研究方案。你一定要知道这并不是真正的需求。你需要与领导再沟通,了解他做用户行为到底是要解决什么问题,摆脱什么困境?如果领导是因为觉得客户流失率太高,想留住客户,那分析方案就应该围绕用户满意度去展开,分析的价值在于研究找到用户不满意的点,并针对这些问题提出改进建议。
如何明确分析的目的?
1、沟通、沟通、再沟通!
领导、业务很多都迫切希望知道结果,原因,该怎么做,有多少提升空间。虽然只是一句话,你要做的岂不止这些,所以要多沟通,找出问题的症结。
2、多问一句,少绕弯路
如果缺乏对业务的认识,在分析时不妨多问一句,关心的指标有哪些?比如分析用户转化率的时候,影响的主要因素有哪些?一般正常的指标是在什么水平?有哪些很客观的外在因素可以排除,比如节假日。
没有目的性的数据分析都是“瞎玩”,都是盲目的。但有人会说,我知道该怎么分析,有目的,但是不知道如何表达,用什么工具操作,找信息部要数据麻烦,做报表困难,Excel只会基本,满足不了需求。想要学习更多数据分析方面的知识,可以选择到cda数据分析师协会去学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08