
真正的数据分析师都做些什么
数据分析在实际工作中的应用方方面面,小到Excel做表,大到数据化决策指导。目前的形势,很少有公司有全面化的数据运营管理体系,导致有些从事数据分析的朋友觉得工作只局限于做图做表,为业务部门供数据。
前阵子和一个从事数据分析的朋友闲聊,谈到他的工作内容,他给我发了一张梳理的工作内容图。
这是他们部门的工作内容框架,从数据基础建设、底层数据应用、专项业务分析,思路清晰而又全面,可以看出是一个有清晰规划的部门。
这里大致给大家梳理一遍。
主题专项分析
目的:解决业务问题
因为是电商行业,用户和产品是很重要的研究对象,流量和转化是很重要的指标,所以建立了各种用户模型、销售模型去挖掘用户属性,利用FineBI建立主题分析,分析购买行为,制定特定的营销策略。
数据报表体系建设
目的:提升效率
数据报表体系是任何企业最基本的数据管理/信息化管理内容,承担着收集、统计、整理和呈现数据的角色。这一块工作是交由FineReport来处理的,大大降低以往开发报表的工作量,统一管理数据,为之后的数据分析工作做铺垫。
数据分析监控
目的:发现问题
数据分析监控主要是辅助内部和外部的一些管理,保障企业的整体运营。比如营销活动,这种难以量化但又占据较多开销的时间需要有力的数据分析去管控,最直接的就是计算投入产出比。
行业市场分析
目的:引导看略发
这个行业的变化是极其快速的。最常用的是通过爬虫挖掘行业内其他竞品的数据,了解竞争对手的动态,分析未来趋势。
数据分析培训
目的:整体提升
随着企业的发展,数据的工作如果全部由信息部门/数据部门来承担的话,会产生数据与业务之间的断片,所以最好的办法就是让懂业务的人会分析,懂技术的人能解决问题。所以不难理解为什么会下大功夫来给业务人员开展基础培训。
数据工具/产品开发
目的:定制+创新
业务需求的特性,很多工具都不能较为完美的满足需求,所以定制+创新依赖是要满足公司数据分析内需。二来是资源变现,这也是近年来很多互联网公司利用数据“卖钱”的体现。
这个框架很好的树立了数据分析的内容框架,就目前来讲,数据分析还是个比较新兴的行当,行业内并没有多少有经验的从业者,大多都是技术转型或业务转型做的,所以在未来有很大的发展前景。
从上升路径上来讲,一开始有可能只是一个助理分析师,之后独立带项目执行,在业务能力、分析技能上有了相当积累后,成为专家,进行决策或者决策支持,推进业务,指导团队,做到统筹规划的层面,完成从业务到决策的飞跃。这个过程也并非顺理成章,这需要你有过硬的业务分析能力,执行管理能力和业内影响力,不断积累行业经验和沉淀能力。
对于大多还处于职场晋升阶段的数据分析师来讲,直白地讲,就三点:工具要熟悉;业务要懂;沟通要好。而后要有持续学习的能力-擅长模仿,勇于创新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14