
为什么要进行数据降维?因为实际情况中我们的训练数据会存在特征过多或者是特征累赘的问题,比如:
一个关于汽车的样本数据,一个特征是”km/h的最大速度特征“,另一个是”英里每小时“的最大速度特征,很显然这两个特征具有很强的相关性
拿到一个样本,特征非常多,样本缺很少,这样的数据用回归去你和将非常困难,很容易导致过度拟合
PCA算法就是用来解决这种问题的,其核心思想就是将 n 维特征映射到 k 维上(k < n),这="" k="" 维是全新的正交特征。我们将这="" k="" 维成为主元,是重新构造出来的="" k="" 维特征,而不是简单地从="" n="" 维特征中取出其余="" n-k="">
PCA 的计算过程
假设我们得到 2 维数据如下:
其中行代表样例,列代表特征,这里有10个样例,每个样例有2个特征,我们假设这两个特征是具有较强的相关性,需要我们对其进行降维的。
第一步:分别求 x 和 y 的平均值,然后对所有的样例都减去对应的均值
这里求得 x 的均值为 1.81 , y 的均值为 1.91,减去均值后得到数据如下:
注意,此时我们一般应该在对特征进行方差归一化,目的是让每个特征的权重都一样,但是由于我们的数据的值都比较接近,所以归一化这步可以忽略不做
第一步的算法步骤如下:
第四步:将特征值从大到小进行排序,选择其中最大的 k 个,然后将其对应的 k 个特征向量分别作为列向量组成特征矩阵
这里的特征值只有两个,我们选择最大的那个,为: 1.28402771 ,其对应的特征向量为:
注意:matlab 的 eig 函数求解协方差矩阵的时候,返回的特征值是一个特征值分布在对角线的对角矩阵,第 i 个特征值对应于第 i 列的特征向量
第五步: 将样本点投影到选取的特征向量上
假设样本列数为 m ,特征数为 n ,减去均值后的样本矩阵为 DataAdjust(m*n),协方差矩阵为 n*n ,选取 k 个特征向量组成后的矩阵为 EigenVectors(n*k),则投影后的数据 FinalData 为:
FinalData (m*k) = DataAdjust(m*n) X EigenVectors(n*k)
得到的结果是:
这样,我们就将 n 维特征降成了 k 维,这 k 维就是原始特征在 k 维上的投影。
整个PCA的过程貌似很简单,就是求协方差的特征值和特征向量,然后做数据转换。但为什么协方差的特征向量就是最理想的 k 维向量?这个问题由PCA的理论基础来解释。
PCA 的理论基础
关于为什么协方差的特征向量就是 k 维理想特征,有3个理论,分别是:
最大方差理论
最小错误理论
坐标轴相关度理论
这里简单描述下最大方差理论:
最大方差理论
信号处理中认为信号具有较大的方差,噪声有较小的方差,信噪比就是信号与噪声的方差比,越大越好。因此我们认为,最好的 k 为特征既是将 n 维样本点转换为 k 维后,每一维上的样本方差都很大
PCA 处理图解如下:
降维转换后:
上图中的直线就是我们选取的特征向量,上面实例中PCA的过程就是将空间的2维的点投影到直线上。
那么问题来了,两幅图都是PCA的结果,哪一幅图比较好呢?
根据最大方差理论,答案是左边的图,其实也就是样本投影后间隔较大,容易区分。
其实从另一个角度看,左边的图每个点直线上的距离绝对值之和比右边的每个点到直线距离绝对值之和小,是不是有点曲线回归的感觉?其实从这个角度看,这就是最小误差理论:选择投影后误差最小的直线。
再回到上面的左图,也就是我们要求的最佳的 u ,前面说了,最佳的 u 也就是最佳的曲线,它能够使投影后的样本方差最大或者是误差最小。
另外,由于我们前面PCA算法第一步的时候已经执行对样本数据的每一维求均值,并让每个数据减去均值的预处理了,所以每个特征现在的均值都为0,投影到特征向量上后,均值也为0.因此方差为:
最佳投影直线就是特征值 λ 最大是对应的特征向量,其次是 λ 第二大对应的特征向量(求解的到的特征向量都是正交的)。其中 λ 就是我们的方差,也对应了我们前面的最大方差理论,也就是找到能够使投影后方差最大的直线。
Python实现
1.代码实现
伪代码如下(摘自机器学习实战):
2.代码下载
下载地址: https://github.com/jimenbian/PCA
loadDataSet函数是导入数据集。
PCA输入参数:参数一是输入的数据集,参数二是提取的维度。比如参数二设为1,那么就是返回了降到一维的矩阵。
PCA返回参数:参数一指的是返回的低维矩阵,对应于输入参数二。参数二对应的是移动坐标轴后的矩阵。
上一张图,绿色为原始数据,红色是提取的2维特征。
Matlab 实现
function [lowData,reconMat] = PCA(data,K)[row , col] = size(data);meanValue = mean(data);%varData = var(data,1,1);normData = data - repmat(meanValue,[row,1]);covMat = cov(normData(:,1),normData(:,2));%求取协方差矩阵[eigVect,eigVal] = eig(covMat);%求取特征值和特征向量[sortMat, sortIX] = sort(eigVal,'descend');[B,IX] = sort(sortMat(1,:),'descend');len = min(K,length(IX));eigVect(:,IX(1:1:len));lowData = normData * eigVect(:,IX(1:1:len));reconMat = (lowData * eigVect(:,IX(1:1:len))') + repmat(meanValue,[row,1]); % 将降维后的数据转换到新空间end
调用方式
function testPCA%%clcclearclose all%%filename = 'testSet.txt';K = 1;data = load(filename);[lowData,reconMat] = PCA(data,K);figurescatter(data(:,1),data(:,2),5,'r')hold onscatter(reconMat(:,1),reconMat(:,2),5)hold offend
效果图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11