京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据将如何改变征信领域
21世纪,互联网、移动互联网、3D打印、人工智能……正如摩尔定律所言,人类的科技革新发展迅速,其中大数据的发展潜力最被看好。大数据的概念非常火爆,但少有人真正理解大数据的核心内容,一个普遍而且严重的误解就是:大数据=数据大,即大数据就是量大的数据。但实际上,大数据的核心在于数据的交叉与流动。
亚马逊前任首席科学家Andreas Weigend将数据比喻成新的石油,在信息社会,随着大数据、云计算、物联网、移动互联网等新技术及相关的创新应用不断加快,海量数据正在政务管理、金融业风控、产业发展、城市治理、民生服务等众多领域不断产生、积累、变化和发展。正如国际咨询公司麦肯锡所说:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。”我国的数据应用资源也正和土地、劳动力、资本等生产要素一样,成为促进中国经济稳定增长的基本要素。
目前,我国互联网、移动互联网用户规模居全球第一,拥有丰富的数据资源和应用市场优势,大数据部分关键技术研发取得突破,涌现出一批互联网创新企业和创新应用。可是,数据之间的交叉融合非常少,信用数据源的割裂是当前影响我国大数据应用和拓展的主要障碍。
对于P2P行业来说,大数据在征信领域作用重大,对P2P平台的核心竞争力是一大考验,国内外都有一些企业正在从事大数据征信的研发、实验乃至实践工作。值得关注的是,目前国内金融行业中成功运用大数据做风控的企业,只有阿里小贷等少数几家。他们主要是通过卖家累计的海量交易信息及资金流水,在几秒内完成对商家的授信。在数据征信领域还是存在很多问题,利用大数据进行风险控制任重而道远。
依赖大数据风控主要靠及时更新的数据和对客户的约束力来实现其有效性,这两个因素也被称为“闭环数据”。尽管年初央行同意8家个人征信机构进行数据的收集,但由于数据库往往涉及平台的核心竞争力,在没有建立起相应的激励机制的情况下,大多不愿意共享。
另一方面,P2P行业的信用数据获取渠道极其有限,个人信用数据部分依靠借款用户自行提交,部分依靠平台上门征集,对借款主体的信用数据征集工作占据了P2P网贷平台的大量人力物力,造成了一定的运营成本压力和管理压力。
美国利用数据进行征信的发展历程与其背后的逻辑对于我国发展征信行业具有一定的借鉴意义。美国信用局协会(CDIA)制定了用于个人征信业务的统一标准数据报告格式和标准数据采集格式,且正在将美国征信数据的标准推广至其他国家,以促进征信体系的全球化发展。除金融相关数据外,电商、电信业、零售业的数据也正在纳入征信体系。
美国征信市场的特点可以用12字概括:专业分工、边界清晰、各司其职。整个征信体系分为机构征信和个人征信,其中机构征信又分为资本市场信用和普通企业信用。个人征信方面,先由美国三大征信局益百利(Experian)、爱克菲(Equifax)美国环联(TransUnion)进行数据处理,然后再由FICO Score和Vantage Score等评分机构进行信用评级,最后应用到实际的金融环境之中,已形成一条成熟的核心产业链。
另外,美国通过立法和行业共识,其数据征信体系也形成了相对统一的标准。以“个人征信”为例,其内涵由“5C1S”定义:品德(Character)、能力(Capability)、资本(Capital)、条件(Condition)、担保品(Collatera)、稳定性(Stability)。同时,信用的边界也得到了明确的刻画,即对于用来量化信用的数据基础形成了共识。
从历史发展路径来看,美国的大数据征信也是先经历了野蛮生长,然后理智整合。在这个过程中,应用场景的拓展、技术的进步和法律法规的完善起到了关键性的推动作用。由于我国利用大数据进行征信还处于初级阶段,央行授权开展个人征信业务的8家征信机构也没有形成成熟的产业闭环,如何协调相关的征信机构与数据源机构,使得基本的信用信息能够共享,这需要两类机构之间互相合作与博弈,也需要政府层面能够做出适当引导,以便早日打破僵局。
令人欣喜的是,加快大数据部署,深化大数据应用,已成为稳定我国经济增长的内在需要和必然选择。最近国务院印发了《促进大数据发展行动纲要》,其中最引人注目的就是开放政府数据和推动产业创新。这是我国第一次把发展大数据上升为国家战略,对推进落实“中国制造2025”和“互联网+”国家战略、促进大众创业、万众创新,推动经济和社会发展具有重要意义。
大数据带来的新服务模式和资源分析处理能力,将带动产业技术研发体系的创新,推动跨领域、跨行业的融合和协同创新,在促进新兴产业快速发展的同时带动传统产业的协同发展,为建设国内信用社会、行业创新提供有力支撑,重塑国家竞争优势
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31