
SPSS:syntax应用中临时变量的技巧
很多的时候,我们计算过程中的一些变量,一些处理结果都只是中间过渡一下,便于后面的计算和分析;还有的时候要得到分析结果少了这些临时变量又不行,今天这里简单的说说几种常用的SPSS syntax“临时变量”应用技巧。
一、临时性命令Temporary
有的时候,我们需要变换已有变量观测值计算相关结果,但又不希望改变原有数据表中的数据。例如,游戏中有个概念叫Arpu,其与游戏的平均在线人数有关,这里我们知道目前游戏的平均在线人数,预测做市场推广之后游戏平均在线人数大概有5%的增长,利用新的平均在线人数来计算收益,就可以用temporary命令来处理这个5%的问题,而不改变原有数据。下面看看temporary运用的简单示例:
----------------------------------------------------------------
#1 DATA LIST FREE /var1 var2.
#2 BEGIN DATA
#3 1 2
#4 3 4
#5 5 6
#6 7 8
#7 9 10
#8 END DATA.
#9 TEMPORARY.
#10 COMPUTE var1=var1+ 5.
#11 RECODE var2 (1 thru 5=1) (6 thru 10=2).
#12 FREQUENCIES
#13 /VARIABLES=var1 var2
#14 /STATISTICS=MEAN STDDEV MIN MAX.
#15 DESCRIPTIVES
#16 /VARIABLES=var1 var2
#17 /STATISTICS=MEAN STDDEV MIN MAX.
----------------------------------------------------------------
代码解析:
上面的代码利用temporary属性,改变var1和var2的临时值,进而计算var1\var2变换后的相关统计量。(注:temporary命令只对其后的一条命令起作用。在这个例子中,temporary只对frequencies起作用,而descriptives命令还是按原始观测值计算)
第1-8行创建一个含有var1、var2的数据集,并给var1输入1、3、5、7、9,var2输入2、4、6、8、10的观测值
第9-11行给var1、var2赋予新的值,但不改变原数据集中var1、var2的观测值
第12-17行则是Frequencies和Descriptives命令,用来描述统计VAR1和VAR2
二、临时变量#VAR
SPSS Syntax语句中所有的临时变量都是以"#"作为前缀,什么是临时变量,在SPSS中临时变量就是指运算用到,但不在结果和数据集中显现出来的变量。例如:我们要通过A计算C,但A又没办法直接计算,我们必须借助中间变量B才能达到计算目的,在整个过程中B都没明显的表现出来,那么此时B就可视为临时变量,为了方便大家更好的理解,这里还是用一个简单的例子来说明问题,示例代码如下:
---------------------------------------------------------------
#1 DATA LIST FREE / var1.
#2 BEGIN DATA
#3 1 2 3 4 5
#4 END DATA.
#5 COMPUTE var2=1.
#6 LOOP #i=1 TO var1.
#7 - COMPUTE var2=var2 * #i.
#8 END LOOP.
#9 EXECUTE.
--------------------------------------------------------------
代码解析:
上面的代码利用临时变量i做循环,通过var1计算var2,来完成一个迭代的过程。var1的初始观测值为1、2、3、4、5,var2的初始值为1,临时变量i从1取到5,通过compute命令计算出var2的值。
第1-4行创建含有var1的数据集,var1包含5个观测值
第5行对var2进行初始赋值,产生一列变量名为var2,观测值为1的变量
第6-8行为一个循环结构,循环N次计算var2的值(N为var1的观测值数)
第9行为即时计算命令execute,类似于transform菜单栏中的running pending transforms(快捷键CTRL-G)
三、其他
除了上面说的2种情况外,其他更多的情形则是伴随具体的分析方法产生的,如一次分析的结果作为下一次分析的数据,常见的如距离分析(proximities)的结果作为聚类分析(cluster)的原始数据,又或者是因子分析的结果作为回归分析的数据,都可以采用将数据结果存储为临时文件的形式来方便计算,譬如常用的matrix out和matrix in子命令就能达到如此效果,由于时间关系,这里不再深入说明。 总之,所有的临时性命令都是为了方便计算,有点类似于EXCEL中辅助列的作用。
小贴士:
TEMPORARY常与以下命令一起使用:
1)数据转换命令compute,recode,if和count,以及重复计算命令Do repeat
2)循环结构语句loop和do if
3)格式变换语句print formats,write formats和formats
4) 观测值选择加权语句select if,sample,filter和weight
5)变量声明语句numric,string以及矢量申明语句vector
6) 标签处理相关语句variable labels,value labels和missing values命令
7)文件存储语句Xsave及split file.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29