京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在面向客户层面“能做”和“不能做”的事情
当下,我们正处于数据爆炸的时代,全球的数据量正在以每18个月翻一倍的惊人速度增长,世界正在高速数字化。大数据也是当下各行各业都在谈论的话题,某些数据分析师甚至扬言:如果可以实时、精确的捕捉一切数据,并且有足够高效的算法与储存设备,大数据可以分析并解决一切问题。窃以为,这样的说法太过绝对,现实情况并非如此。大数据并非是无所不能的。
笔者在这里试图从应用的角度分析一下电信行业大数据能做的和不能做的事情,而对于业务层面的“能”与“不能”。
大数据在面向客户层面“能做”的事情:
1、完善客户画像,洞察客户特征:
拥有更全面的客户数据后,能更逼近客户的真实情况。大数据因其强大的数字记忆功能,在一定程度上能做到比客户自己还要更了解客户,具有“读心术”功能,这个容易理解;
2、发现行为模式的DNA,预测客户将发生的动作:
法国数学家泊松说过:一旦我们承认人类行为是随机的,它突然之间就可以被预测了。《爆发》作者艾伯特·拉斯洛·巴拉巴西据此认为:依据泊松分布规律推断,人类行为93%是可以预测的。大数据的核心功能就是关联预测,比如识别离网客户在离网前的行为模式DNA,就能推测出所有在网客户在某个时期的离网率。类似的还有客户换机时间、偏好机型的预测等等。
3、识别客户需求偏好,开展个性化服务:
还是围绕客户来说,大数据能发现客户的兴趣偏好、渠道偏好等,在规则引擎的实时触发作用下,相应的触点就能即时捕捉到机会,触发完成相应的动作,进行个性化的精准服务与营销,做到“应时应景”、“正中客户下怀”,这对于提高营销效率、客户感知肯定是大有裨益的,当然这里面还要注意让客户比较舒服的接受触点的服务,不要让客户觉得我们是在利用他们的隐私在做事情,这里面是讲究技巧的。
大数据在面向客户层面“不能做”的事情:
大数据的确能记录客户的各种属性特征、行为轨迹,这些数据也确实反映了客户的操作和使用行为,但是所思并不完全就是所想,客户的行为也不能完全反映其真实意图。
1、大数据不能“算”出客户的创意和想象:
大数据来源于现实,但是人类的许多想法并非来源于现实,创造性的思维与想象往往是天马行空、超越现实,因此《大数据时代》作者克托·迈尔·舍恩伯格直言:创意和想象,用大数据是“算“不出来的。
2、大数据及时很智能也无法替代客户思维:
大数据或许能帮助客户做出一些决策方案,但最终选择客户哪个方案、做出何种动作,最终决定权还是在客户自己手中。人类的思维过程、内心的真实想法是大数据不能够完全测算出来的。人类的思维、决策镶嵌在时间序列和社会背景之中,但数据是不能读懂这些背景的,也读不懂这些背景之后的一些潜规则,因而无法洞悉人类思维的浮现过程。即使是一部普通的小说,数据分析也无法解释其中的思路脉络,显见大数据是不能替代人类的思考的。
3、大数据不能预测超越人类认知范围的事情:
大数据的核心功能就是预测,但是大数据无法预测毫无先兆、超越人类认知极限的事情,这类事情通常被称为“黑天鹅”。大数据是基于历史数据来预测未来的,但当历史不可掌握时,大数据也是无计可施的;
再者,大数据在采集、处理过程中难免被融入数据分析师的价值观和倾向性,这会让数据往往并非是原始客观的,会影响最后的分析结果,而真实的“黑天鹅”隐藏于无形之中,是很难被发现的;
另外,著名思想、《黑天鹅:如何应对不可知的未来》的作者纳西姆·塔勒布指出,随着我们掌握的数据越来越多,可以发现的统计上显著的相关关系也就越来越多,这些相关关系中,有很多都是没有实际意义的,在真正解决问题时可能将人引入歧途。
4、大数据无法描述客户的感情:
大数据另外一个局限性在于它很难表现和描述客户的感情。大数据在处理人类情感、社会关系、前后关联等问题的时候,表现往往不尽如人意。大数据只能告诉我们客户在做什么,而不能告诉我们客户在做的时候是怎么想的、背景是怎样的,或者客户在做的时候有什么样的情绪波动。所以,大数据往往是不能直达客户心智空间,理解客户拥有何种价值观的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29