
大数据、智能化背景下 安防存储技术的发展趋势
在物联网、大数据、智能化的驱动下,视频、图像等非结构化数据呈现爆炸式增长,人脸识别、智能分析等技术涉及到民生、安全方面的人工智慧化趋势越来越明显,而高清监控图像的普及以及政府出台条例规定视频录像的最低存储时间等因素,也导致了数据量的必然增长。在这样的趋势下,对于视频监控等领域的存储智能化和大容量的需求也越来越旺盛。
视频监控超高清化对存储的需求增加
监控存储一个重要的趋势就是对容量的需求特别高。对于摄像头而言,现在4K甚至7K的清晰度已经受到关注,未来会成为主流,这意味着对容量的要求特别高。以30天的视频数据保留需求看,250个摄像头全天候录制,每个月需要的存储容量就要超过337.5TB。
高清存储需要系统的高稳定性和可靠性。由于视频数据量太大,要求单体存储产品的稳定性要好,从而保证整个系统的稳定性,而具有高性能的硬盘或存储虚拟化产品可以提高存储利用率从而降低成本,满足客户的存储需求。
高清监控系统中,数据存储是视频监控中重要的一个环节,网络化、智能化的存储技术在监控系统中已发挥着越来越重要的作用。海量的存储空间、稳定可靠的网络环境和系统、智能存储等因素对高清监控存储的影响越来越大。
目前存储的主要解决方案包括直连式存储(DAS)、储区域网络(SAN)、网络接人存储(NAS)等3种。DAS是架构比较简单的存储系统,但是其未实现存储和转发的分离,对服务器性能要求比较高。由于DAS对于距离的限制性,扩容比较困难,不太适合广域网的“全球眼”大容量要求的业务平台。NAS在性能上已经有了很大的提高,但是其设计上还是以文件共享为主,文件系统查询缓慢,容量不可管理,数据越来越多时甚至会出现无法调用的情况,不适合流媒体特别是监控的应用。SAN又可分为FCSAN和IPSAN,其中FCSAN更多用于数据中心局域范围内高带宽、低时延的IT系统,而且建设成本高,不适合于视频监控系统,而IPSAN在成本、网络距离、系统性能等多方面都更加适合广域网、大容量的视频监控存储系统。
云存储是未来存储发展的必然趋势
高清时代全面来临的情况下,机遇与挑战并存。其中,软件开发能力、成本控制需要引起关注。软件开发能力主要是指存储厂商面向监控平台厂商的软件开发能力。众所周知,全国有众多视频监控平台厂商,而过去几年建设的“平安城市”等视频监控项目采用了多个平台厂商的软件系统,这就要求存储厂商具有强大的软件研发对接实力:一方面能够针对监控平台的视频数据传输模式进行存储系统的优化,另一方面也要求存储厂商能够和监控平台厂商一起面向用户的应用需求做定制化的二次软件开发。
与此同时,在网络化、智能化、高清化的驱动下,云存储技术在安防监控市场发展上也将变得更为重要。高清时代,存储技术的前瞻性和用户应用的前瞻性的交叉点问题即存储容量和带宽问题,解决之道就是“云存储”。
云存储具备以下优势:(1)存储管理可以实现自动化和智能化,所有的存储资源被整合到一起,客户看到的是单一存储空间;(2)提高了存储效率,通过虚拟化技术解决了存储空间的浪费,可以自动重新分配数据,提高了存储空间的利用率,同时具备负载均衡、故障冗余功能;(3)云存储能够实现规模效应和弹性扩展,降低运营成本,避免资源浪费。
有关行业数据表明,2016年全球云计算市场预计可达1300亿美元,年增长率为20%左右。而IDC的预测也显示,云存储市场的前年比将增加10%。
云存储已经成为未来存储发展的一种趋势,目前,云存储服务商正在将各类搜索、应用技术和云存储相结合,以便能够向企业提供一系列的数据服务。视频监控行业需要的就是高清智能和实时监控,画面清晰,还有视频数据存储功能,以便于日后有需要的时候可以抽查当日视频监控情况。而云存储具备了这样的功能,把数据保存到云端,需要的时候随取随用,大大方便了视频监控工作人员,未来将带领各行各业走得更远。
云存储主要核心技术包括虚拟化技术、数据安全存储和保护技术,海量的数据存储带来的数据筛选、处理和计算工作也成倍增长,因此,如何从大数据中精准且快速地抓取目标数据,智能挖掘出类似特征和行为的数据,成为当务之急。云计算的出现,很好的解决了上述存储难、读写难两大问题。
云和互联网+的背景下,海量的数据安全问题成了用户为之担心的问题,相应的网络数据安全管理问题也日益凸显。数据安全本身有两方面的含义:一是数据本身的安全,如数据保密、数据完整性、双向强身份认证等,二是数据防护的安全,主要是采用现代信息存储手段对数据进行主动防护,如通过磁盘阵列、数据备份、异地容灾等手段保证数据的安全。
云存储已经成为未来存储发展的一种趋势,目前,云存储服务商正在将各类搜索、应用技术和云存储相结合,以便能够向企业提供一系列的数据服务。视频监控行业需要的就是高清智能和实时监控,画面清晰,还有视频数据存储功能,以便于日后有需要的时候可以抽查当日视频监控情况。而云存储具备了这样的功能,把数据保存到云端,需要的时候随取随用,大大方便了视频监控工作人员,未来将带领各行各业走的更远。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14