京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据三问:大数据“热”的冷思考
大数据概念的形成和发酵,在当今社会引发了人们无限的遐想和期待,也受到普遍的欢迎和推崇,甚至有人不断编造出关于大数据无所不能的种种现代神话。这种令不少人癫狂、着迷的东西是否真的“法力无边”,我们不妨试发三问。
大数据的特点在“大”,是否越大越好?
回答是不一定。
人类对世界的认识,首先是感知信息。但问题在于,人类许多方面的感知能力却不如普通动物,比如人的嗅觉不如狗,听觉不如猫,视觉不如鹰等等。
难道高级动物竟然比不上低等动物?显然不是。奥秘在于人类相对普通动物而言,长处在思维。思维之花乃是生物进化的杰作,人类凭借思维之利器,便可以通过科学技术手段,根据需要延长自身的器官,最后实现各方面能力都远在一般动物之上。在此过程中,关键是计算机技术的发展,得以替代人的部分逻辑思维,能够进行大规模数据的快速处理,从而使得我们在面对大数据时,不至于心怀畏惧。
20世纪以来科技领域看起来硕果累累,但真正具有颠覆性意义的发现却如凤毛麟角,甚至不及19世纪。问题何在?数字化的数据固然有利于从中发现规律,但这类数据在整个大数据库中所占份额极小,何况还有一个鱼龙混杂问题。至于那些尚未数字化的数据,尤其是那些似是而非、众说纷纭的数据,显然并非越多越好。
事实上,就人类认识而言,也有减材加工与增材加工两种方式。毛泽东在《实践论》中所说的去粗取精、去伪存真、由此及彼、由表及里的认识过程,其实就是讲的真理性认识有增有减的过程。当年第谷观察天象,所做工作就是增加数据;而开普勒总结天体运行规律,所做工作则属删繁就简。如果说数据的增加意味着真理性认识的增加,那么数据的减少则意味着真理性认识的深化和升华,何尝不值得我们同样为之喝彩?
大数据 的亮点在“数”,是否万物皆数?
回答是不可能。
数字的发明,是人类抽象思维能力发展的产物。而发现数字之间的某些关联,曾经更使人类欣喜若狂,毕达哥拉斯甚至据此作出了“万物皆数”的断言。大数据之所以吸引人们眼球,噱头就在“数”上,似乎一切化归于数,就可万事大吉,适合数字化生存的时代要求了。
应该看到,世界在演化的进程中,特别是生命体和人类社会诞生后,正负二分的表征法就变得越来越不适用了,无论是模拟仿真技术的兴起,还是复杂化方法的运用,都说明这种建立在非此即彼的认识论基础上的进位法,其实是形而上学思维方式在信息时代的反映。
由此可见,所谓的数据其实有两类,一类是可以实现数字化的数据,人类可以轻而易举地将它的处理任务付之电脑,进而从中发现规律、把握规律。而另一类不可数字化或者说很难实现数字化的数据,则还是必须依靠人脑的判断与解读。1948年美国的“驴象”之争中,盖洛普的配额抽样方法以及其他民意调查机构之所以遭遇“滑铁卢惨败”,就是因为过于迷信数据,而这种建立在数字基础上的所谓“科学”方法,其实经实践检验后被发现并不科学。过去这些年来,定量评估在世界各地盛行,人们动辄以各式各类指标体系肢解复杂事物和系统,最后闹出许多笑话,正说明现代的数字崇拜照样是此路不通。
大数据的基点在“据”,是否据实逼真?
回答是不见得。
信息技术的推广应用同样是一把双刃剑,它在为人们提供无限便利的同时,也为数据造假及其传播洞开了方便之门。据《环球科学》2014年12月载文,生物科技风投资本家有一个经验法则:一半公开发表的科研成果都无法复制,这还是最乐观的估计。2012年,生物科技公司安进发现,在关于癌症研究的53项重大成果中,只有6项可被复制。稍早前,拜耳制药公司的一个团队重新开展了67篇有重要影响的论文所做过的实验,最终成功的却只有四分之一。本世纪最初10年,应用于临床的研究专利大约有8万份被撤销,因为它们都是错误的。
面对如此庞大的虚假数据,你还会相信大数据即未来石油的神话吗?美国科学计量学家普赖斯曾在上世纪50年代就得出科学知识呈指数增长的结论,其依据是各国期刊文献的数量增长。此后,有关知识爆炸的说法甚嚣尘上。现在回头看,普赖斯的判断未免草率,因为期刊文献数量与人类知识量显然是不能画等号的,否则就会得出撤销某些期刊就是限制知识增长的荒唐结论。
总之,科学的发展在深刻改变人类生产生活方式的同时,也制造了许多令人目不暇接的神话。当泥沙俱下且呈雪崩式的大数据袭来时,我们更应保持一个清醒的头脑,用中国的古训来说,就是要防止以目废心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29