京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析也讲究艺术
数据分析也讲究艺术,如何理解?
我们先来分析一下数据分析的流程:确定目标>收集数据>分析数据>可视化展示>评价。再思考其间参与的人员,谁来操作这些数据:数据分析师、业务员、IT人员。谁来需要这些分析:业务层、领导层、老板。
对于数据分析的痛点,分析师希望快、准确、最好能为清晰的逻辑分析提供帮助。业务层、领导层希望好看、直观,关键的指标能够展示得全面。
所以,基于这样的思考,数据分析的“艺术性”可理解为数据的行为艺术、分析的行为艺术和可视化艺术。
数据的行为艺术
数据的处理关键在于准确和严谨。数据最初从各系统采集、导入预处理、统计、挖掘,会涉及方方面面的问题,比如:
1、统一口径的问题
数据源存在于多系统,是统计口径不一的主要问题。统一口径的问题实质是数据管理的问题,关键在于改善统计方法,提高统计质量。填报、表单这类工具从源头规范数据。
例如,同一内容在不同系统不同的叫法;同一内容在不同系统不同的分类法;同一内容在不同系统不同的统计规则;手工数据都需要注意校验。
2、数据缺失
数据缺失的问题有人为、有字段问题。缺失值处理可以采用替代法(估值法),利用已知经验值代替缺失值,维持缺失值不变和删除缺失值等方法。具体方法将参考变量和自变量的关系以及样本量的多少来决定。
分析的艺术
分析关键在于方法,不同的分析相信不同的人由不同的方法。你可以吭哧吭哧粘贴复制到excel,进行简单的计算、出图,然后粘贴复制到PPT,只要数据是静态而准确的。也可以利用FineReport这样的报表工具做企业级常用的动态报表、复杂报表。
逻辑上,对比分析、分类分析、分布分析、相关分析这些基础的分析帮助在可视化呈现上有直观的展示。
可视化艺术
可视化的艺术不在于“炫”,而在于“人性化”。人们意识到数据上的重要性,却没有从文化上完成这样的转变,可视化可以帮助人们意识到这样的转变,从而达到实用的最终目的。
比如以上的信息化视图,色彩美观,但是帮助我获得有效的数据对比有困难。
如今数据图的复杂和创新主要源于展示维度的增加和形态的变化,希望数据的展示饱满而夸张。
但实际上,可视化数据关键在于信息的传递,让人一看就对数据、问题一目了然,其次再谈美观、功能。数据的展示现寻求直观再讲求全面,譬如以下用FineBI做的分析图。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27