
数据分析也讲究艺术
数据分析也讲究艺术,如何理解?
我们先来分析一下数据分析的流程:确定目标>收集数据>分析数据>可视化展示>评价。再思考其间参与的人员,谁来操作这些数据:数据分析师、业务员、IT人员。谁来需要这些分析:业务层、领导层、老板。
对于数据分析的痛点,分析师希望快、准确、最好能为清晰的逻辑分析提供帮助。业务层、领导层希望好看、直观,关键的指标能够展示得全面。
所以,基于这样的思考,数据分析的“艺术性”可理解为数据的行为艺术、分析的行为艺术和可视化艺术。
数据的行为艺术
数据的处理关键在于准确和严谨。数据最初从各系统采集、导入预处理、统计、挖掘,会涉及方方面面的问题,比如:
1、统一口径的问题
数据源存在于多系统,是统计口径不一的主要问题。统一口径的问题实质是数据管理的问题,关键在于改善统计方法,提高统计质量。填报、表单这类工具从源头规范数据。
例如,同一内容在不同系统不同的叫法;同一内容在不同系统不同的分类法;同一内容在不同系统不同的统计规则;手工数据都需要注意校验。
2、数据缺失
数据缺失的问题有人为、有字段问题。缺失值处理可以采用替代法(估值法),利用已知经验值代替缺失值,维持缺失值不变和删除缺失值等方法。具体方法将参考变量和自变量的关系以及样本量的多少来决定。
分析的艺术
分析关键在于方法,不同的分析相信不同的人由不同的方法。你可以吭哧吭哧粘贴复制到excel,进行简单的计算、出图,然后粘贴复制到PPT,只要数据是静态而准确的。也可以利用FineReport这样的报表工具做企业级常用的动态报表、复杂报表。
逻辑上,对比分析、分类分析、分布分析、相关分析这些基础的分析帮助在可视化呈现上有直观的展示。
可视化艺术
可视化的艺术不在于“炫”,而在于“人性化”。人们意识到数据上的重要性,却没有从文化上完成这样的转变,可视化可以帮助人们意识到这样的转变,从而达到实用的最终目的。
比如以上的信息化视图,色彩美观,但是帮助我获得有效的数据对比有困难。
如今数据图的复杂和创新主要源于展示维度的增加和形态的变化,希望数据的展示饱满而夸张。
但实际上,可视化数据关键在于信息的传递,让人一看就对数据、问题一目了然,其次再谈美观、功能。数据的展示现寻求直观再讲求全面,譬如以下用FineBI做的分析图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14