
各行都和大数据攀关系 但数据不落地终究是场空
时尚界有流行趋势,科技圈也是如此,大数据就是近几年科技圈的流行趋势,不管什么都要和大数据沾个边,但似乎并没有什么新的应用让人切身感受到大数据带来的惊喜,给人的感觉总是炒作的意味更浓
科技公司或者企业、政府并不是他们不想做好,而是受到了制约,主要是两个方面的制约,一个是数据量小且难以利用,另一个是转化经验少实施困难。
为什么说数据小呢
首先是数据化程度很低。只是近几年政府才开始在使用电子信息化办公平台的时候才积累了点数据,早年大量的数据基本都是以文件及纸质的形式存储在政府办公楼仓库里,而纸质的数据我们是无法使用的。想要将这些纸质数据化是一个非常庞大的工程,需要耗费巨大的人力物力,而这关键性的一步恰是一个吃力不讨好的活,所以一般承接政府大数据的公司也都很少去触碰。
另外就是数据割裂,各个部门的数据都和宝贝似地保护着,生怕其他部门抢走,这就导致了数据的割裂,无法整合。比如要进行一个智慧城市的建设,至少需要交通数据、气象数据、人社数据等等部门的数据进行综合考量,但是每个部门都把自己手里那点数据看的和宝贝似得,碰都不让人碰,又何谈数据整合呢?
所以很多政府大数据工程到最后就流于表面,最后把手头少的可怜的数据做做数据可视化,弄一些大屏幕,展示出来给领导汇报一下就结项了。
第二个就是转化经验少
比如农业大数据,是有不少的农业数据和气象数据,甚至还有粮食收购数据、农产品价格数据等等,但是即使这些数据全部都开放给施工方,如何使用还是一个大的问题,如何利用现有的数据通过数据挖掘、数据分析让这些数据产生价值转化、形成生产力,这又是面临的新的问题。
除此之外,中国的农作方式也是一个很大的制约因素,家庭为单位的小作坊式的田块化种植,无法集约化管理,这就导致了农民种什么、什么时候种都有自主权,那么现状是什么呢?
以现在最大的渤海粮仓为例,在山东几个县市为试点的渤海粮仓项目,最后落地后的成果是什么呢?所谓物联网 大数据的实践到最后就是找几块试验田,插上杆子,装上几个传感器和摄像头,然后做一下数据展示,甚至很多地方的传感器和摄像头都被农民卸走了,如何指导生产,又如何将农业机械制造产业链打通呢?
最后
搞大数据不是喊喊口号,做做样子就能搞起来的,这需要专注并持续的投入,不一定有多大的数据,别只顾着建机房,即使是依靠着现有的几百万条数据,通过场景化的应用分析,给出人们建议,让大家切实的得到实惠,让老百姓切实看到大数据带来的好处,这才应该是大数据的必须经历的过程。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14