
大数据时代下传统数据分析在商业运用中的诸多弊端
提到“大数据分析”,人们近两年对这个词并不陌生,国内媒体对于有关“大数据”及“数据分析”概念的大范围炒作,使得人人都知道意识到了“大数据”时代的到来。无论在哪家企业的商业模式里,大数据分析近乎成为了一种标配,而似乎一夜之间,国内各型各色的数据分析企业也如雨后春笋般冒了出来。
的确,大数据时代已经到来。
根据调查,去年全球大数据和业务分析总收入约为1229亿美元,同比近三年内数据,呈现较大增幅趋势。毫无疑问,随着大数据时代的到来,大数据分析技术对各行各业商业化运作都已产生重大影响。 尤其在一些垂直领域,包括汽车、家装、电子产品等行业在全球市场大数据分析技术运用的最多,这部分全球收入共占据约228亿美元。
在中国,我们熟知的很多知名企业都已经将大数据分析技术运用在自己的服务中。例如,阿里通过分析用户购物习惯进行商品类目推荐,滴滴通过数据计算为用户置配车辆,京东利用商品库存分析进行仓储管理。更多的中小企业也开始意识到大数据分析的重要性,并加入到大数据分析的行列之中。
但是随着“大数据”和“数据分析”概念炒作的升温,也让很多企业CIO/CTO们对其产生“畏惧”。一方面,企业发展中不可避免的充斥着很多无从分析的非结构化数据。在大数据分析中这类数据虽然至关重要,但目前我国绝大多数的数据分析公司还尚不具备对其分析的能力。而传统的结构化数据分析在国内仍存在不科学、周期长、性价比低及无法产生直接经济效益等弊端。另一方面,由于大数据分析具有海量的数据规模、快速的数据流动、多样的数据类型和价值密度低等特征,企业通过部署及使用大数据工具可以获取更精准的资源,从而提高自身利润率和竞争优势。因此,在庞大的市场需求下。尽管不少数据分析公司不具备大数据分析的能力,还是被驱使着进入到这片红海之中,这也使得目前国内市场数据分析公司水平良莠不齐。
而企业即使了解大数据分析所能带来的红利,也因对大数据分析缺乏基础认知,不能真正选择适合自身业务的数据分析模式。很多企业级的客户自身在进行大数据分析时,仍以结构化数据分析为主,忽略了相对内涵丰富的非结构化数据。
国内企业进行结构化数据分析通常采取“招标+外包”的传统模式。企业级客户按照历史经验应先建立起自己的数据分析KPI(关键绩效指标),然后以此为参照将整个数据分析任务外包给第三方数据公司,经过数月的分析后,由数据公司将分析结果返还给甲方企业。企业依据分析结果再进行策略调整。
在面对如今数据爆炸的时代,传统数据分析在商业运用中暴露的诸多弊端,主要可以归结为以下七条:
第一,非结构化数据往往内涵更为丰富并且至关重要。目前我们所认知的数据分为两大类,一类可以用数据或统一的结构加以表示,被称之为结构化数据,例如数字、符号等,而无法用数字或统一结构表示的另一类信息则被称为非结构化数据,如文本、图像、声音、网页等。
企业以往使用的传统数据分析系统仅仅只能对结构化和关系性的数据进行处理分析,这部分数据一般是已知且容易理解的,通过抽样读取很小一部分数据集来对整个数据集进行预判。而在企业发展过程中,所产生的数据其存在形式往往各式各样,非结构化数据分析正是基于企业海量数据处理分析,所得出的结果也更为精准。
第二,KPI非数据驱动生成,缺乏科学性。国内企业数据分析前制定KPI标准常常以人为经验得出,而不是由数据驱动并且实时生成的,因此造成的结果则是KPI常年不变,并且缺乏科学性。在最终数据分析上会存在较大误差。
第三,数据分析时效性差。国内企业在进行大数据分析时采用第三方外包的方式,整个周期至少也要数月的时间,往往返还回结果时,企业内部的相关数据已经完全改变了。
第四,浪费了企业内部的分析师资源。不少企业都用有自己的内部分析师,采用外包的方式,完全浪费了这部分资源,企业从经济效益上很不划算。而且在数据衔接上,由于第三方数据公司并不清楚企业的详细情况,通过数据分析无法真正了解数据背后所蕴含的实际原因。
第五,数据安全性无法保障。外包的数据安全性问题一直是国内企业CTO的老大难问题,因为一些企业核心数据会涉及到商业机密,企业若想确保数据以安全的方式交予第三方大数据公司,往往需要耗费额外的时间和经济成本。
第六,数据分析结果不能与企业经济效益直接挂钩。由于第三方数据公司的介入,国内企业在得到数月的分析结构后,从内部执行上并不能很好地将分析结果运用到企业经济效益的改善上,数据分析最终成为了一堆没用的数字。
第七,第三方大数据公司分析能力有限。国内大部分第三方公司由于缺乏动态、数据驱动的数据分析工具,更多时候也仅是依照经验制定KPI和进行数据分析,这样分析出的结果同样缺乏科学性。
正是基于上述弊端,才使国内企业陷入了数据分析的困局。其实,非结构化数据的分析,是每个企业都是非常渴望的。但由于受国内技术的制约以及工具的缺乏,公开市场上鲜有出色的分析平台。大数据分析的核心技术只掌握在一些顶尖企业和专业数据分析公司手中,通常价格不菲。
我们相信,在未来的大数据分析技术中,非结构化数据分析将逐渐取代传统的结构化数据分析技术,通过海量的数据分析来为企业应对更为复杂的商业模型,从而替企业提高市场洞察力并创造价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14