
大数据时代,业务运维驱动下的企业变革
从信息化时代起,企业一直在试图发现业务数据中深藏的商业价值,并为此诞生了数据挖掘、商业智能、BPM、BSM等诸多技术,然而互联网时代的到来,专为封闭生产环境而生的信息化系统,已经无法满足企业高速增长的互联网开放业务和随着而来的海量信息的处理需求。互联网+最大的价值在于“连接”,企业根据原有生产、经营模式构建起来的IT系统,显然无法满足互联网用户的连接和需求,互联网+转型的难点也正在与此。如何在企业现有IT架构的基础上,快速实现前端互联网用户与后端业务系统的有效连接,构建起全新的、基于大数据分析的业务生态系统呢?
传统企业在进行互联网+转型的过程中,用户将通过网站、APP与企业内部IT系统进行连接。以金融和零售领域的典型业务场景为例,过去消费者要到门店通过营业人员完成交易,而现在只需要在手机上进行简单操作就可以搞定一切。随之而来的是业务的交付不断向互联网迁移,同时用户体验随着业务系统的转移而前置,用户对企业服务的感受不再由前台业务人员决定,而是由产品使用过程中的应用体验决定,IT运维部门成为互联网经济中最能准确感知用户体验的部门,运维与业务的结合成为确保企业进行互联网+成功转型的支撑点。
如今,虚拟化、容器、Serverless、SDN等技术的应用和第三方SaaS服务的普及,让曾经大量牵扯IT部门精力的基础架构运维,逐渐被敏捷、高效的自动化运维所取代,越来越多的运维人员被释放出来,有充足的时间和精力去关注业务。技术运维部门的工作重心和工作方式随之发生变化,由过去专注于IT基础资源、网络质量运行指标监控,向关注业务指标和用户体验转变;故障的发现和解决也由被动巡查基础设施和网络问题来解决系统故障,转变为基于业务数据的风险评估分析,主动发现业务系统性能瓶颈,提前进行资源扩容规划,而这些变化都在促使IT部门从成本中心转变为企业的价值中心。
业务运维体系的建立是以企业现有业务系统为基础,需要IT部门从业务系统、IT支撑和业务管理三个维度对业务进行有效梳理。业务系统维度涵盖ERP系统、交易系统、订单系统、支付系统、物流系统、供应链系统等业务数据源;业务支撑维度则覆盖计算、存储等IT基础设施和网络、应用端的性能数据;业务管理维度则是从企业管理的视角,对业务流程、业务结果、业务效率和业务评价数据进行整合,而这三个业务维度共同组成满足企业发展需求的业务运维三维立体模型。
云智慧在构建基于大数据的业务运维解决方案时采用自下而上的方法,以业务系统、交易系统、订单系统、财务系统、物流系统、客户系统、监控系统为基础,通过大数据处理平台对来自底层的原始数据进行采集、存储、处理和趋势预测分析,最后通过数据可视化工具把分析结果以报表和趋势图的方式展现出来。
而要准确定位和分析因性能不佳对业务造成的不良影响,则需要以用户视角自上而下对业务流程的性能进行透视分析,首先通过应用监控对前端用户体验(包括用户来源、用户行为、用户感受、用户去向等)进行准确感知,然后结合业务拓扑、容量规划、交易分析和问题分析等方法确认受影响的业务环节和结果,最后通过应用性能产品对应用层和基础设施层性能瓶颈的准确定位和预警。
业务运维是IT运维与企业业务深度融合的产物,是运维管理在互联网+时代和云计算、大数据技术推动下的必然结果。云智慧面向产品全生命周期构建起以用户体验为核心,以业务价值为导向的业务运维支撑平台,运用业务运维监控指标和业务运维考评规范等科学方法论为指导对业务运维数据进行分层获取,整合用户投诉反馈、基于用户的业务质量监控数据,对业务影响和问题进行分析,得到SLA管理与绩效考评结果,并通过业务运维可视化工具呈现出来,最终实现应用性能的持续提升和业务健康高速增长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28