
大数据时代,业务运维驱动下的企业变革
从信息化时代起,企业一直在试图发现业务数据中深藏的商业价值,并为此诞生了数据挖掘、商业智能、BPM、BSM等诸多技术,然而互联网时代的到来,专为封闭生产环境而生的信息化系统,已经无法满足企业高速增长的互联网开放业务和随着而来的海量信息的处理需求。互联网+最大的价值在于“连接”,企业根据原有生产、经营模式构建起来的IT系统,显然无法满足互联网用户的连接和需求,互联网+转型的难点也正在与此。如何在企业现有IT架构的基础上,快速实现前端互联网用户与后端业务系统的有效连接,构建起全新的、基于大数据分析的业务生态系统呢?
传统企业在进行互联网+转型的过程中,用户将通过网站、APP与企业内部IT系统进行连接。以金融和零售领域的典型业务场景为例,过去消费者要到门店通过营业人员完成交易,而现在只需要在手机上进行简单操作就可以搞定一切。随之而来的是业务的交付不断向互联网迁移,同时用户体验随着业务系统的转移而前置,用户对企业服务的感受不再由前台业务人员决定,而是由产品使用过程中的应用体验决定,IT运维部门成为互联网经济中最能准确感知用户体验的部门,运维与业务的结合成为确保企业进行互联网+成功转型的支撑点。
如今,虚拟化、容器、Serverless、SDN等技术的应用和第三方SaaS服务的普及,让曾经大量牵扯IT部门精力的基础架构运维,逐渐被敏捷、高效的自动化运维所取代,越来越多的运维人员被释放出来,有充足的时间和精力去关注业务。技术运维部门的工作重心和工作方式随之发生变化,由过去专注于IT基础资源、网络质量运行指标监控,向关注业务指标和用户体验转变;故障的发现和解决也由被动巡查基础设施和网络问题来解决系统故障,转变为基于业务数据的风险评估分析,主动发现业务系统性能瓶颈,提前进行资源扩容规划,而这些变化都在促使IT部门从成本中心转变为企业的价值中心。
业务运维体系的建立是以企业现有业务系统为基础,需要IT部门从业务系统、IT支撑和业务管理三个维度对业务进行有效梳理。业务系统维度涵盖ERP系统、交易系统、订单系统、支付系统、物流系统、供应链系统等业务数据源;业务支撑维度则覆盖计算、存储等IT基础设施和网络、应用端的性能数据;业务管理维度则是从企业管理的视角,对业务流程、业务结果、业务效率和业务评价数据进行整合,而这三个业务维度共同组成满足企业发展需求的业务运维三维立体模型。
云智慧在构建基于大数据的业务运维解决方案时采用自下而上的方法,以业务系统、交易系统、订单系统、财务系统、物流系统、客户系统、监控系统为基础,通过大数据处理平台对来自底层的原始数据进行采集、存储、处理和趋势预测分析,最后通过数据可视化工具把分析结果以报表和趋势图的方式展现出来。
而要准确定位和分析因性能不佳对业务造成的不良影响,则需要以用户视角自上而下对业务流程的性能进行透视分析,首先通过应用监控对前端用户体验(包括用户来源、用户行为、用户感受、用户去向等)进行准确感知,然后结合业务拓扑、容量规划、交易分析和问题分析等方法确认受影响的业务环节和结果,最后通过应用性能产品对应用层和基础设施层性能瓶颈的准确定位和预警。
业务运维是IT运维与企业业务深度融合的产物,是运维管理在互联网+时代和云计算、大数据技术推动下的必然结果。云智慧面向产品全生命周期构建起以用户体验为核心,以业务价值为导向的业务运维支撑平台,运用业务运维监控指标和业务运维考评规范等科学方法论为指导对业务运维数据进行分层获取,整合用户投诉反馈、基于用户的业务质量监控数据,对业务影响和问题进行分析,得到SLA管理与绩效考评结果,并通过业务运维可视化工具呈现出来,最终实现应用性能的持续提升和业务健康高速增长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14