
大数据成为信息再价值化的金矿
云计算作为新一代信息技术的重要发展方向,已被广泛认为是支撑信息化应用和业务模式创新的核心,其技术与产业发展,以及应用的推广普及,对于我国深入推进两化融合、完善社会管理手段、转变经济发展方式具有重要战略作用。在云计算技术的支撑下,大数据已经成为新时代重要的战略资源。随着经济社会信息化日臻成熟,云计算、移动互联网和物联网等新一代信息技术的广泛应用,数据增长速度越来越快,数据类型越来越丰富,大数据的价值日渐凸显。大数据时代,无论是政府、互联网公司、IT企业还是行业用户都面临巨大挑战及机遇。企业的决策方式正在从“业务驱动”转变“数据驱动”。真正能够利用好大数据、并将其价值转化成生产力的企业必将具备强劲有力的竞争优势,从而成为行业的领导者。
深入探讨新一代信息技术的发展趋势,全面把握新一代信息技术在传统产业技术改造和转型提升中的新需求、新应用和新机遇,是当今最为重要的课题。2013年11月2日,主题为“创新云计算智领大数据时代变革”的中国云计算产业发展及大数据应用高峰论坛在武汉科技会展中心胜利召开,论坛上,知名专家、主管领导、行业龙头企业及云计算解决方案提供商,就云计算及大数据解决方案及应用进行了深入探讨。
云计算加速信息技术在行业领域应用
云计算作为加快推进我国两化融合发展的突破口,将极大地推动中国信息基础设施建设,推动传统产业的改造升级和加速培育高科技新兴产业,将有利于行业企业特别是中小企业低成本、灵活实现信息化运营,节约IT资源和降低总体拥有成本。两化深度融合要求进一步深化信息技术在研发设计、生产、流通、管理等关键环节上的应用,促进信息技术从单项应用向综合集成转变,云计算为产业链上下协同提供了优质的解决方案,融合各类资源,并通过虚拟化技术向用户提供标准化服务,支持工业在广泛的网络资源环境下,为产品提供高附加值、低成本和全球化制造的服务。随着能源、金融、制造、电信、物流等行业信息化应用向纵深发展,工业领域各行业迫切需要应用云计算新兴技术来满足信息系统整合、商业数据分析处理等领域的需求,以建设高效、动态、弹性的“灵动型”一体化云平台。
新一代信息技术的融合发展引发大数据热潮
大数据伴随着物联网、移动互联网、数字家庭、社会化网络等新一代信息技术应用不断增长,随着对大数据行业应用的深入研究,赛迪顾问认为未来在智慧城市、电信、金融、卫生以及电子政务等领域将是大数据技术应用的最佳行业沃土。特别是在智慧城市、电信和金融行业,随着行业信息化的深入开展,大数据应用热潮已经掀开了新的一页,中国大数据市场将进入高速发展时期。对大数据的处理和分析成为新一代信息技术的融合发展的核心支撑,而云计算则为这些海量的、多样化的大数据提供存储和运算的支撑平台。
大数据成为信息再价值化的金矿
电信行业信息化的进步和信息通信技术的发展使得信息化平台采集、处理、积累的数据越来越多,数据量增速也越来越快。运营商已深刻认识到大数据的重要性,在企业内部已经利用大数据实现消费行为记录管理。在经营分析系统中,深度挖掘融合市场、集团、客户、客服、网络、财务数据,为业务和决策部门提供较完备的用户数据分析,使公司决策由“经验型”转为“分析型”,实现了精细化运营。
金融服务企业都希望能充分利用各种服务交付渠道如分公司、网络、移动通信等海量客户数据,开发新的预测分析模型,实现对客户消费行为模式进行分析,提高客户转化率。一些互联网厂商将凭借自身数据资源进入金融领域,传统金融企业也将改变经营思路重塑业务架构,而新的商业价值将在这场变革中被发掘出来。
智慧城市建设带来数据的爆发式增长,大数据涵盖智慧交通、智慧医疗、智慧生活等智慧城市建设的各个角落,通过对存储在云计算平台上大数据进行挖掘和分析,能够为城市规划和建设提供强大的决策支持,成为智慧城市建设的智慧源泉。
面对国内云计算及大数据产业的蓬勃发展,云计算及大数据市场的迅速扩张,云计算及大数据应用不断创新的形势,充分挖掘云计算及大数据潜在应用新价值,将成为商业活动和经济运行的决策支持,对大数据的利用将成为企业提高核心竞争力和抢占市场先机的关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14