
大数据时代 数据分析如何进行
大数据时代究竟意味着什么?更多数据——理论上,全部数据都可以纳入收集、挖掘、分析和利用的范畴。正如牛津大学网络学院互联网研究所治理与监管专业教授维克托·迈尔-舍恩伯格在其所著的《大数据时代》一书中指出的,“我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样”。
《大数据时代》也指出,海量数据纳入分析,必然意味着甄别、筛除,并由此带来误差和相对精确的结果。“误差”和“相对精确”是什么意思呢?基于计算机和互联网的系统服务、软件服务仍不免出现出错乃至面临崩溃,比如,杀毒软件会发生“错杀”、“误杀”,手机里的防骚扰软件有时会对通讯录里边的已有号码开展拦截,最可靠的电子邮箱仍不免将明明很安全的邮件驱逐到“垃圾邮箱”。
纽约大学统计系教授冯启思(Kaiser Fung)在《数据统治世界》一书中,对大数据时代到来背景下,数据挖掘分析所需遵循的统计规律及其应用进行了深入而颇具趣味的探讨。冯启思以反兴奋剂组织为例,更深入的探讨了误差和相对精确问题。
对于反兴奋剂组织而言,“假阴性”、“假阳性”或许是永远无法避免的尴尬,前者指的是服用禁药却通过某种方式主动或检测机构的疏漏,而错误检测为隐性,以类固醇检测为例,每确认一个使用就要漏过十个“假阴性”;后者则指没有服用过禁药的无辜者,却被药检为阳性。“假阳性”与正确的药检隐性的比例达到了1:899。药检检测机构面对的一个消长关系是:假阳性少了,假阴性就多了,反之亦然,即放宽检测的某些指标,可以减少乃至防止无辜者被错检为假阳性的可能;收紧某些指标,就会减少服用禁药者逃过处罚的比率,看上去,这是个均衡的风险等式。实则不然,错检无辜者的假阳性事件,会给体育部门、反兴奋剂组织带来极大压力,招致运动员工会、媒体和公众的强烈抨击;假阴性引起的批评就要少得多,因为没有直接的、个人化的受害者。因此,检测机构会尽量避免假阳性发生,容忍“假阳性”的存在,宁可放过十个,也绝不冤枉一个。
在一些国家和地区,刑事案件侦办以及反恐机构开展中运用到的测谎,则出现了反向偏向,造成大量的无辜者被认定为罪犯或恐怖主义组织成员,为其没有犯下的罪行错误承担责任。值得注意的是,无论是反兴奋剂检测,还是反恐检查,都较早的体现了大数据海量采集数据的理念,应用并不断更新升级数据挖掘与分析的技术,但仍不能避免假阳性和假阴性两类误差带来的极大代价(经济代价和社会代价),甚至可能因错误检测和冤案葬送公众对反恐体系、司法体制的信心。很显然,大数据时代在误差不可避免的情况下,要在假阳性和假阴性两类误差之间取得某种平衡,让误差造成的社会总成本趋于最低,而这也才是相对精确的要义所在。
数据挖掘与数据分析,所对应的是“统计式思维”。冯启思在《数据统治世界》这本书中分别谈及了平均数与差异性、随机模型和相关模型、组别差异、精确与误差、小概率等“统计式思维”涉及到的重要概念。归结他的观点,第一,数据分析要避免陷入平均化误区,要努力辨识发现数据差异性。举例来说,百年一遇的灾害,并不能理解为在一百年内每一年的灾害风险只有1%,事实上很多保险公司在偿付巨灾后的赔款时迅速滑向破产,就源于对灾害风险极端变异性和空间集中性的忽略。第二,要挖掘数据之间的相关性,而不能仅仅停留于因果性。第三,要善于建立标准对数据开展分类分组分析,也就是实现更趋精确的比较。第四,重视风险,但要避免将过多资源投放到防止或争取某些小概率事件发生之上。这些要点不仅是大数据时代值得重视和遵循的数据挖掘分析重要原则,而且也有助于人们更好、更为深入的认识社会复杂系统,借助数据挖掘分析的力量改善工作与生活。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28