京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析必备!4大思维方式
数据本身没有价值,合理的分析利用之后才能提炼有用信息。
数据分析说白了就是将特定范围的数据进行不同维度的组合,展示关键指标的状态,找到问题,分解原因,制定方案。从数据转变为信息的过程中,数据的选取、出路、结构的布局都是有一定思路的,或者说是思维方式,来作为统一的分析模式,这样的模式,以下罗列了4点。
思维一:对比
单个数据摆在那儿,看不出苗头,必须与同类数据作对比,比如环比、同比。很多敷衍了事的数据分析报告,直接汇报了数量、金额等这种单薄的数据,领导并不能看出有什么差异,这时如果你放上环比,同期比这些能明确体现效果的指标,甚至计算投入产出,这些分析结果都有价值得多。
比如下图就将本期数据与上期作对比,并展示出差额,能明显得看到变化情况。
思维二:维度拆分
维度除了对比还可以拆分。给大家描述一个场景。
当财务部门分析今年的净资产收益率为什么会下降2%的时候,对比就不起作用了。要对净资产收益率这个维度做分解。
净资产收益率=总资产收益率*权益系数
总资产收益率=注意业务收益率*总资产周转率
依次分解,就得到熟悉的杜邦模型,利用这样一个数据展示可以实时了解各项指标,帮助分析。
这样一种思维方式的好处就是:判断越细致,越利于解决问题阶段采取有效精准的措施。
思维三:降维/增维
在对数据进行增维或降维前,需要充分了解数据本省的意义以及指标间的关系,有目的地对数据进行转换处理和运算,最终实现数据分析的目的。
思维四:假说演绎
在思考时迷茫或找不到方向时,可以尝试使用假说演绎法,也就是假设,可以尝试猜测结果,然后反向递推思考,从结果出发,细分原因。
例如,在做未来年度指标或者阅读指标的时候,不能随便画大饼,可以先立下一个目标,然和细分指标,分配到个人,然后依据个人情况和历史情况思考是否合理。或者做市场活动,设想要达到什么样的结果,结果量化是什么样的指标,然后哪些方面需要做工作等等。
除此之外,过程也是可以被假设的,这里就不多细说。
以上就是数据分析的四个思维方式,在做简单数据分析时可对应尝试套用。很多数据分析工具的设计都有这方面的体现,可以在思维上协助分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12