
数据分析必备!4大思维方式
数据本身没有价值,合理的分析利用之后才能提炼有用信息。
数据分析说白了就是将特定范围的数据进行不同维度的组合,展示关键指标的状态,找到问题,分解原因,制定方案。从数据转变为信息的过程中,数据的选取、出路、结构的布局都是有一定思路的,或者说是思维方式,来作为统一的分析模式,这样的模式,以下罗列了4点。
思维一:对比
单个数据摆在那儿,看不出苗头,必须与同类数据作对比,比如环比、同比。很多敷衍了事的数据分析报告,直接汇报了数量、金额等这种单薄的数据,领导并不能看出有什么差异,这时如果你放上环比,同期比这些能明确体现效果的指标,甚至计算投入产出,这些分析结果都有价值得多。
比如下图就将本期数据与上期作对比,并展示出差额,能明显得看到变化情况。
思维二:维度拆分
维度除了对比还可以拆分。给大家描述一个场景。
当财务部门分析今年的净资产收益率为什么会下降2%的时候,对比就不起作用了。要对净资产收益率这个维度做分解。
净资产收益率=总资产收益率*权益系数
总资产收益率=注意业务收益率*总资产周转率
依次分解,就得到熟悉的杜邦模型,利用这样一个数据展示可以实时了解各项指标,帮助分析。
这样一种思维方式的好处就是:判断越细致,越利于解决问题阶段采取有效精准的措施。
思维三:降维/增维
在对数据进行增维或降维前,需要充分了解数据本省的意义以及指标间的关系,有目的地对数据进行转换处理和运算,最终实现数据分析的目的。
思维四:假说演绎
在思考时迷茫或找不到方向时,可以尝试使用假说演绎法,也就是假设,可以尝试猜测结果,然后反向递推思考,从结果出发,细分原因。
例如,在做未来年度指标或者阅读指标的时候,不能随便画大饼,可以先立下一个目标,然和细分指标,分配到个人,然后依据个人情况和历史情况思考是否合理。或者做市场活动,设想要达到什么样的结果,结果量化是什么样的指标,然后哪些方面需要做工作等等。
除此之外,过程也是可以被假设的,这里就不多细说。
以上就是数据分析的四个思维方式,在做简单数据分析时可对应尝试套用。很多数据分析工具的设计都有这方面的体现,可以在思维上协助分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29