
数据分析的三个层次
企业每个月都会要求经营单位上报的计划预算、经营报表,领导需要看,需要用这些数据来决策。但数据经过企业内部各个“衙门”的上传下达的加工处理程序之后,往往会失真。数据失真了,领导很恼火!应对基本有两种做法,一是不再看经过“衙门“加工的结果(还不能取缔了这些“衙门”,民营企业也不行),而是深入一线自己去抓“一手”数据分析。
但这样很累,一线的数据散落在时间轴和空间轴上,支离破碎,而一线的员工往往没有加工分析能力。领导想在短暂的时间里,充分发现一线的问题,很累。二是领导狠抓数据分析过程,找来源,过报表,拧着大小“衙门”开会定规矩。这样也很累。不同的“衙门”的定位不同,对于数据的理解和过路价值不同,对数据的加工过程千差万别,加之“衙门”对于重要数据心里隐藏的“小九九”做祟,统一起来,也很累。抓源头,缺过程;抓过程,总失真,两头堵,造成了“领导也是好忽悠的”的局面,企业越大越问题越严重。
其实数据并不能产生直接价值,数据的本质是商业的语言,就像人类有了语言,可以沟通,就有了经验的积累,就有了思想的进步一样,数据是企业这样商业体的语言体系,在企业里应该用统一的数据语言作为沟通工具,而不是用自然语言做替代。
企业有三个层次的数据。原始数据、汇总数据和分析数据。 原始数据是“一手货”,是通过现场采集来的。现场需要采集的数据又可以分为四类。
属性数据, 比如姓名、性别、出生年月……是静态数据,对于目标对象而言这类数据一年甚至更长时间之内是不会变的。
交易数据 ,从目标客户、粉丝客户、准客户、会员客户到续费客户,客户跟你交易全过程过程的纪录,是动态数据,一年之内基本又变化。
行为数据 ,纪录客户的行为特征,比如购物网站对客户浏览习惯的分析,移动公司对手机使用习惯的分析,商业综合体对客户动线的分析等等,也是动态数据,基本上天天都在发生。
动机数据 ,是客户与企业发生关系的动因分析,比如销售顾问总结出的打动客户的100个原因,属于定性分析的范畴,是对前边数据的补充和场景化解读,也是动态数据。
原始数据的采集有两个关键需求:一是所见即所得。数据采集是有窗口期的,买卖双方在交易过程中的“化学反应”时间很短,现场感稍纵即逝,错过了数据就会变质。因此,要求数据采集的工具方便、快捷,能够融入“化学反应“的现场环境。二是统一口径。每个数据的数据名称涵盖的范围、时间周期和颗粒度大小需要预定义,同时一整套原始数据的主关键字从静态的行为数据中挑选。这些需求必须在组织内部通过培训的手段强化统一。
汇总数据是“二手货”,是通过对原始数据的加减而得到的数据,比如月度营业额,季度成本费用总额、年度利润总额等等。汇总数据反应的是企业的发展规模,或者阶段工作的进度。通过考察汇总数据,我们能够获取企业发展的速度。既然是二手货,就需要分配给专门的“衙门”完成。分析数据是“三手货”,是通过对原始数据和汇总数据的乘除而得到的数据,比如销售利润率、库存周转率等等。汇总数据反应的是企业的经营效率,通过考察分析数据,我们能够看清企业发展的质量。
三手货也需要专门的“衙门”完成,而且是领导身边的“贴身衙门”完成。信息系统是解决数据问题的有效工具,通过迭代经验,不断固化,实现原始和加工过程两头兼顾,日积月累,保障企业数据的畅通。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14