
更多的数据会带来更好的决定
在「大数据」时代的很多领域流传着这样一句谚语:如果你拥有的数据越多,那么所能做出的决定就会更加得精准。那么在现实生活中真的是这样吗?又或者如我过去所指出的,我们现在所获得的分析比以前更没有代表性吗?
一个非常典型的例子就是全球肥胖率,让我们意识到拥有更多的数据,甚至是实时数据,如果没有意愿或者没有足够毅力和耐力采取实际行动那么这些数据的价值是微乎其微的。当代的普通市民从未像现在一样存在足够多的方式来监控健康的方方面面。联网体重秤在每天清晨能够记录我们的体重;智能手机端的条形扫描能够记录我们消耗的每个卡路里;心率传感器和血氧传感器能够每隔几秒监控我们的剧烈运动;计步器能够追踪你的步数;从血压计到葡萄糖计的大量其他医疗设备都能传达关乎我们健康生活的精准数据。而这个不断膨胀的市场甚至出现了要求血液和基因测试的产品。
那么为什么在这些能够频繁接触各种健康监测设备的国家内肥胖率却不断刷新历史最高记录?我们只需要点几下鼠标就能基于最近几天的锻炼方式和每天记录的体重变化来提供独立个体的理想卡路里摄入,但是为何这些精准的数据无法转换成为完美的健康哪?这是一个非常值得深思的问题,我们正激发出「庞大的创新力」来发掘欺诈设备的各种方式,而不是将它们作为工具来改善我们的健康。
问题是访问这些数据并非简单地等同于充分利用这些数据。正如我在今年三月份所指出的,美国政府不乏庞大的精细数据,但是缺乏处理数据的专业技能和授权并将所有的数据转换到具体措施。一家典型的美国服装公司通常具备庞大的数据监测从 T 恤开始缝的第一针开始到 T 恤被消费者购买并带出商店的整个过程的运作。而问题是如何将这些复杂的数据串联整合起来用于解决商业挑战
我所接触的太多公司和机构都视「大数据」孵化和数据分析是充满神奇力量的解决方案,简单地认为只需要获得足够多的数据能够立即推动现有的业务。近年来多家公司疯狂投资物理和数字传感器并尝试和现有业务进行融合,然而他们都还没有搞清楚所有这些数据希望能够解答什么样的问题,且在这样匆忙地部署传感器到现有公司生态系统中是否会产生盲点等等。事实上,这种情况已经在社会多媒体分析领域存在,我经常能够看到公司凭借令人难以置信的高分辨率社交媒体地理上来映射社会观点,与此同时却忽略了在这些地图上依然处于黑暗中的地区,创建了其他分析师在其他分析渠道从未关注的盲区。
在数据社区存在这样一种共识:充足的数据就像是一锅粥,而噪声和偏见就像老鼠屎能够破坏整锅粥的味道。而问题是当我们不断往锅中投入食材(数据),整锅粥并不会因此重新回归到正确的味道,反而会增强偏见的存在。在这样的情况下,小型且更平衡的数据池或许可以散发出更迷人的香气。事实上,正是这种信念在庞大的数据面前催生出纠正导致情感分析领域迷失所有弊端的能量。
信息过载同样也是驱动迫使人类朝人工智能(AI)聊天机器人发展的重要因素。当企业争夺越来越多的大数据,他们已经不再能够在庞大的显示器面前简单地挖掘包含数千项指标的所有数据。他们需要人工智能来对所有数据进行筛选并总结预判事物未来的走向。
事实上,昨天华盛顿邮报刊登了极具震撼力的新闻报道,当医生被接二连三的自动警报淹没的时候那些在医院接受治疗的患者却承受了极大的痛苦。在未来电子医疗记录系统将会聚合不断发展的详尽医疗指标,通过减少医疗错误的精准算法让接近于无限次的合理交互和丰富的领域知识储备逐渐成型。换言之,你可以设想乘坐一辆无人驾驶汽车在繁忙的城市街道穿行,那么人类驾驶员可以幸福地不去关注车辆前方有什么东西,无人驾驶汽车的丰富传感器能够避免数千种潜在危险并预估实际上可能会产生什么后果。以医疗警报为例,合法警报容易在大量的误报中丢失,那么同样可以引申这样的观点–大部分网络安全警报容易在合法却不恰当的流量上丢失。
综上所述,或许大数据今后的焦点应该更少的集中在通过任意部署来收集越来越多的数据,而是更多的聚焦到如何筛选能够反应所提问题的小型辅助数据流上。又或者随着人工智能的成熟,在未来能够竞争应付无限庞大的数据并解决处理所有的问题。在文章的最后,给企业的一点建议是必须更少的依赖数据收集而应该花费更多的时间和精力去深挖如何对数据进行分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14