
数据分析如何帮产品实现用户增长
腾讯深度报告,2016年,75%的消费者仍计划保持或增加消费支出。随着人们收入水平的提升,消费者愿意花费更高的价格来购买提高生活品质的产品与服务。对于商家而言,他们拥有多种机会吸引日渐成熟的消费者,解决他们对当前生活的不满。
举例来说,健康对于所有城市消费者而言都很重要,但是大城市上层中产阶层及富裕消费者在食品,特别是高品质的食品以及高品质的服务上花费的更多。 于是一些针对高端人群的产品应运而生。
例如针对一线白领等高端人群推出的高端餐饮电商类产品—ENJOY,为用户提供了一些经过精心筛选的餐饮产品,提供独特而稀缺的用餐体验,希望在“如何吃得更好”这一问题上为大家提供一些富有情感的食物解决方案。
随着平台上食物品类以及服务的增多,频繁给用户推送消息,由于用户的需求各不相同,给用户带来了极大的伤害。一部分人深受其害而狠狠卸载掉。对于一款产品来说,用户的严重流失是一个无法容忍的事。可是,不推送,用户无法第一时间知道平台上了什么新的品类;推送了,用户频频被消息打扰。
是否可以提供一个两全其美的方法——既可以给用户推送消息,还能够让他们看到推送的第一时间是欣喜而不是厌恶呢?
两全其美的好方法当然有——个性化推荐。
通过分析用户行为,根据用户喜好,为他们推送与之对应的产品优惠活动等消息,来吸引用户,从而提升用户留存。
用户行为路径分析是互联网行业特有的一类数据分析方法,所依赖的数据主要是服务器中的日志数据。
用户在使用App过程中的每一步都可以被记录下来,分析用户在APP或者网站中各个模块的流转规律与特点,挖掘用户的点击模式,使得用户可以便捷地依照产品设计的期望主流路径直达核心模块,这时候需要关注的便是优秀的布点策略。
通过一款基于用户洞察的精细化运营分析工具,将SDK集成到App或网站中,便能获得应用内的所有用户行为数据。
笔者认为在每个App里,不是所有事件都有着同样的价值,基于对核心事件的深度分析需求,笔者推荐大家使用层级化的自定义事件布点方式,每一个事件由三个层次组成的:事件(Event)、属性(Key)和属性值(Value)。同时,还为开发者们提供数据监测布点咨询服务,可以根据丰富的行业经验为客户提供个性化的事件布点咨询和技术支持。
分析用户行为,为用户推荐喜欢的内容,给运营策略的优化提供了科学指导,提升留存率。 一款电商类产品,订单价、订单数、支付数是运营最看中的数据。例如ENJOY,操作它的路径如图:
从其中一条路径中选取几个重要的行为建立行为漏斗。
漏斗模型通常是对用户在网站或App中一系列关键节点的转化率的描述,这些关键节点往往是我们人为指定的。
例如我们可以看到某购物App应用的购买行为的漏斗转化情况。这款购物App平台上,买家从浏览到支付成功经历了4个关键节点,商品浏览、加入购物车、结算、付款成功,从步骤1到步骤4,经历了其关键节点的人群越来越少,节点的转化率呈现出一个漏斗状的情形,我们可以针对各个环节的转化效率、运营效果及过程进行监控和管理,对于转化率较低的环节进行针对性的深入分析与改进。
其他的漏斗模型分析场景可以根据业务需求灵活运用,它拥有十分强大的漏斗分析工具,是您充分发挥自己对于数据的想象力的平台。
接下来就可以查看漏斗分析的结果了:
产品关键模块的转化率,对运营来说是一项很重要指标,运营人员的职责之一就是不断的提升重要的使用过程的转化率,来提升产品的留存率。
数据分析,是企业成长道路上,用来发现问题,提升运营效率的利器。而这些问题中,最值得被重视的就是留存率分析。
无论有多少新增用户,最终决定企业成功与否的,是用户的留存率与变现能力。花了一个周拉来1000用户,两三天后只有不足50人继续活跃,如果你不知道用户的流失原因,就无从下手去唤回流失的950多个用户,进而就演变成需要拉来20多新增才能增添一个长期活跃,然而变现率又能占长期活跃的多少呢?
这也是为什么,越来越多地企业对用户的CLV(生命周期价值)重视起来并进行分析:
通过路径分析,对每一个用户的每一个行为路径(商品浏览、加入购物车、结算、付款成功)进行跟踪与记录,在此基础上分析挖掘用户路径行为特点,清楚的了解每一步的来源与去向、每一步的转化率,从而根据用户喜好为他们进行针对性推荐。
通过漏斗模型,简单直观计算并展示出事件之间的转化率,为运营优化提供直观的数据,方便运营了解个性化推荐后的效果。
如此,践行用户为核心的生命周期价值分析。这样的分析价值将会成为未来创新企业的制胜法宝。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14