
手把手教你使用R语言的主成分分析对城管事件数据分析
概念性的东西就不说那么多了,这次使用主成分分析主要目的并不是降维,而是分析城管数据中的事件类别之间是否存在关系,当然,城管事件类型有好几百,这里就只选取从去年九月到目前发生量前十的事件类别;如下图,排名前十的事件类别依次为,车辆乱停放,乱堆物料堆,非法张贴小广告,店铺出店经营,自备容器外放,违规标语宣传品,机动车乱停放,暴露垃圾,地面不洁,道路不洁。
确定好这十个类别后就是数据的提取了,这时候我们要注意一下数据结构,和数据样本量,为什么呢?因为在主成分分析的时候事件类别只能是属性,也就是说事件类别是一列;这时候看看一下城管数据里面存在的数据结构,数据记录数必须是属性的6~10倍,这时候观察城管数据结构,明显不是我们想要的,
于是写个SQL转换一下数据结构,起的别名没有按照规则来,这是个失误;
这时候就要使用R语言去做分析了,首先是让我们能从数据库里拿数据,所以创建一个数据库链接,安装包RODBC
R语言代码
install.packages("RODBC")
library(RODBC)
jixiao_connect <- odbcConnect("jixiao",uid="jixiao",pwd = "*****",believeNRows=FALSE)
这时候我们就创建了一个数据库连接jixiao_connect,这时候我们就要提取数据
R语言代码
jixiao_data <- sqlQuery(jixiao_connect,"
select
sum(case when t.kind_code_thd='车辆乱停放' then 1 else 0 end) kind_one
,sum(case when t.kind_code_thd='乱堆物堆料' then 1 else 0 end) kind_two
,sum(case when t.kind_code_thd='非法张贴小广告' then 1 else 0 end) kind_three
,sum(case when t.kind_code_thd='店铺出店经营' then 1 else 0 end) kind_code_4
,sum(case when t.kind_code_thd='自备容器外放' then 1 else 0 end) kind_code_5
,sum(case when t.kind_code_thd='违规标语宣传品' then 1 else 0 end) kind_code_6
,sum(case when t.kind_code_thd='机动车乱停放' then 1 else 0 end) kind_code_7
,sum(case when t.kind_code_thd='地面不洁' then 1 else 0 end) kind_code_8
,sum(case when t.kind_code_thd='暴露垃圾' then 1 else 0 end) kind_code_9
,sum(case when t.kind_code_thd='无照经营游商' then 1 else 0 end) kind_code_10
from test_erkang t
where t.district_name in ('美兰区','龙华区','秀英区','琼山区')
GROUP BY T.DISTRICT_NAME,TO_CHAR(T.REVIEW_FIRST_DATE,'YYYYMM')")
jixiao_data
验证数据是否被提取,说明数据已经提取成功
我们在安装主成分需要用的包
R代码
install.packages("psych")
library(psych)
首先我们要做的是需要确定主成分需要几个,这时候我们就需要cattell碎石检验来确定主成分个数,也就是保留特征值大于1的主成分,因为特征值大于1的主成分能解释较多的方差;
R代码
fa.parallel(jixiao_date,fa='pc',n.iter = 100,show.legend=FALSE)
上图中我们应该选取3个主成分
R代码
pc <- principal(jixiao_date,nfactors=3,rotate = 'varimax')
pc
后面那个是我们选择的主成分旋转的方法,为了主成分之间能更容易的解释,结果如下
PC1列下的系数是和各个事件类别的相关系数,h2列表示成分能够解释方差的多少,u2列表示没法解释解释方差的比例,事件KIND_ONE也就是车辆乱停放,主要相关联的是主成分PC1,相关系数为0.97,PC2和PC3的相关系数分别为0.05,0.07,主成分能够解释车辆乱停放95%的方差,无法被解释的比例为0.055;proportion var 表示解释整个数据集的解释程度,PC2解释变量30%方差,PC1解释变量26%方差,PC3解释变量21%方差,主成分能够解释整个变量77%的方差;
对主成分进行可视化
R代码
fa.diagram(pc)
又上图我们可以知道主成分组成,大致归类为
PC1:无照经营游商,暴露垃圾,车辆乱停放
PC2:乱堆物堆料,非法张贴小广告,自备容器外放,机动车乱停放,地面不洁
PC3:店铺出店经营,违规标语宣传品;
根据业务和个人的推测
我推测PC1所表示的繁华的步行街道成分,PC2表示的是城中村成分,PC3表示的是主干道成分。
建议和小结
1、可以认为乱堆物堆料,非法张贴小广告,自备容器外放,机动车乱停放和地面不洁是一类相关联事件类别,无照经营游商,暴露垃圾和车辆乱停放是一类相关联事件类别,店铺出店经营,违规标语宣传品可以认为是一类相关联的一类事件类型
2、可以认定主要事件来源是来自城中村,主干道,和步行街道;
3、步行街道给的相应的措施可以增加相应的非机动的停车位,划分小贩经营点,增加环卫人员的清扫频率
4、城中村:提高相应的停车规划,集中整治城中村环境卫生
5:、主干道:相应的增加巡查员的巡查频率即可
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27