
新媒体行业如何利用大数据掌握受众趣味
数字信息爆炸时代,我们生活的每时每刻都在产生着数据信息。沃尔玛通过对过去一年原始交易数字的详细分析将尿布与啤酒一起销售,取得赫然的业绩;Google通过分析美国人最频繁检索的词汇,将之与季节性流感传播时期的数据进行比较,从而建立了一个特定的数学模型,最终成功预测了冬季流感的易发地区。在电信、金融等行业已经达到“数据就是业务”的地步。这不由让人联想,大数据能为媒体带来什么?
1 揭开大数据的神秘面纱
大数据(Big Data)是指以多元形式、自许多来源搜集而来的庞大数据组,也有一种说法称大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。
大数据的特点就是“庞大”、“海量”。这是因为人类每时每刻的活动都伴随着数据信息的产生,数据集合的范围已经从兆字节(MB)到吉字节(GB)再到太字节(TB),甚至还有拍字节(PB)、艾字节(EB)和泽字节(ZB)的计数单位出现。
大数据可能取自社交网络、商务和视频网站、顾客来访纪录,还有许多其他来源。用户电脑浏览记录、手机通信记录、网页浏览习惯、微博使用习惯、手机GPS定位跟踪记录等这些行为都会被作为数据记录下来。
2 大数据时代下的媒体思维转变
大数据在物理学、生物学、环境生态学、医药学等科学领域已有广泛应用,对军事、通讯、金融等行业也有广泛的影响。随着互联网的风行,大数据对互联网的影响日渐加深,而对于依托互联网发展起来的新媒体行业也初现端倪。
大数据统计技术发展到今天,生产、存储、积累的数据量之大,已经超越了一般人所能想象的范围。“以铜为镜,可正衣冠;以古为鉴,可知兴替”,而以“数据”为镜不仅能掌握历史信息,还能更好地预测未来。
①利用大数据掌握受众趣味
美剧《纸牌屋》的成功让人们将焦点聚集在数据分析对媒体的应用层面。这部收视火爆的美剧出自影片租赁提供商Netflix。Netflix对2700万名美国订阅用户、3300万名全球订阅用户的评分、观看记录、好友推荐等信息进行深度挖掘,从而找出用户喜欢的视频风格、内容风格、导演和演员,利用这些关键信息确定了观众喜爱的体裁、演员、导演。
②注重个体用户体验
因为大数据技术的支持,促进了各类终端、平台的发展,为用户带来了多样化的信息获取渠道,并使用户在意见的表达和信息的发布中占据一席之地,终端和平台为了吸引用户,会根据用户的搜索记录,得出每个用户的爱好、兴趣,为他们推荐适合自己的社群。
③实现多屏互动
随着互联网的快速升级和智能终端的发展,用户收看渠道从单一媒体到多终端整合。全媒体、全渠道、全终端,已成为媒体发展自身的必然趋势。目前,较多电台将自己的品牌节目,放到自己的PC、移动互联网、IPTV和OTT等平台进行播放,并且开设微博、微信公众平台,通过与观众的亲密互动,把握他们的观看需求。
3 大数据对新媒体的作用
大数据的云计算能力可以为手机APP、微博、微信等移动终端提供大数据服务,成为媒体融合的底层平台基础,微博的推荐用户、搜索引擎的相似关注都是在大数据的支持下实现的,新媒体的大数据系统需要具备信息采集的功能, 根据用途的不同,设计系统的日信息处理量,对信息进行过滤、去重、相似性聚类、情感分析、文摘、自动分类等处理。
①手机APP
大数据可以使APP应用实现精准推送,并借助APP互动的环境,对用户爱好进行挖掘。例如电商会透过不同的生活服务APP,对每位消费者产生的支付数据进行估量和测评,然后量体裁衣的对自身的商品实施推送。无论是购物类APP、团购类APP还是咨询类APP,用户规模越大,数据采集时间越久,对用户的需求分析就越精确。
②微信
微信的公众账号管理平台可以实时统计每个自定义菜单的点击量、分析每次推送消息的点击率,并自动进行客户分层。这意味着每一个公众账号都可以通过微信平台的数据收集与分析功能了解到哪一类的信息更易于被订阅用户接受、哪一些订阅用户对产品的关注度高,从而为不同的客户推送个性化的服务内容,实现有效的信息推送。
有人预言未来的几十年,数据将会成为人类最宝贵的财产之一,大数据对新媒体的作用是否能持续发酵,我们都将期待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29