
想做大数据人才,就不要成为这十种人
如今,数据科学家已是炙手可热,那些曾经对其毫无所知的企业,眼下也开始在全世界搜寻最好的数据科学家。问题在于,优秀数据科学家的标准是什么?和其他东西一样,数据科学家也是良莠不齐,招聘他们是一项重要的投资,如果选了个“次品”,你会付出沉重的代价。凭借一批出色的数据科学家,Facebook为自己的社交媒体平台注入了富有创造力的新功能,令用户为之兴奋。
过去10年里,数据呈现爆炸式增长。大数据扑面而来,普通人很难弄懂它的含意,更别提加以利用了。但数据科学家能从中提取出有价值的信息。对一家公司来说,数据科学家的雇用成本很高,由于这方面的人才供不应求,他们的薪水会迅速上涨。
在当今这个时代,解雇员工同样代价不菲,错误的招聘会使你的公司倒退几个月。所以,在寻找优秀的数据科学家时,你也应该警惕蹩脚数据科学家的迹象。如果发现以下10个迹象中的任何一个,你都应该迅速远离。
1. 糟糕的数学背景
许多计算机专家和程序员都会把自己说成是数据科学家,但实际上,真正出色的数据科学家通常拥有数学背景。优秀的数学家可以成为最好的数据科学家,但数学不好的程序员不行。蹩脚的数学家无法有效地分析数据,而这恰恰是数据科学家的首要任务。
2. 计算机知识贫乏
没错,优秀的数学家可以成为顶尖的数据科学家,但光是会在笔记本上写公式可不行,他们还必须熟练地运用计算机来处理数据,要熟悉Spark和其他系统。如果你的数据科学家坚持要求配一名助手,因为他用不来电脑,那么你应该继续寻找,去雇用其他人。
3. 没有全能型人才
一个人集统计学家、开发员、数学家和其他身份于一身,并不意味着他能成为一名数据科学家。几乎可以肯定的是,他拥有跨领域知识,能够根据不同的职位需求来推销自己。他也许什么都会,但可能什么都不精。
4. 纯粹的学术派
你需要有实践经验的人。如果他们的所有经验都来自学术机构,当他们面对现实问题时,可能会束手无策。寻找有实践经验的人,不要在这方面妥协。
5. 缺乏团队精神
数据科学家将和其他人共事,所以你不会想要一个不合群的人,即便他再怎么聪颖过人。数据科学家应该真正地融入团队,了解整体情况,做出全面改进。而如果他们不能和其他人融洽相处,就做不到这一点。
6. 缺乏商业知识
数据科学家不能只会运用理论。他们还要重视经过验证的技巧,运用可靠的传统方法。这些都来自于实践经验。
数据科学家需要参加商务会议,通过演示向高级管理层阐述分析结果。因此,在雇用一名数据科学家之前,要确保他拥有一定的商业知识,这一点非常重要。
7. 不熟悉工具
你面前的那个人拥有丰富的技术知识,但他们能否运用这些知识?如果他们没有实际运用过SAS、R、Scala、Python或其他计算机语言,他们可能只会像一个“绣花枕头”,中看不中用。
他们必须能够利用工具来阐释和转化信息流。
8. SAS成瘾者
有些SAS开发人员会把自己包装成数据科学家,但他们不是。数据科学家应该掌握多项技能,对于某个具体的问题,他们可以运用多种不同的系统。而蹩脚的数据科学家在遇到任何问题时,都只会采用同一种技能,他们希望用一种语言就能解决所有问题,这是不切实际的。
9. 没有理科学位
这是个不好的迹象,因为数据科学属于理科范畴。你也可能自学成才,但如果有人能秉持科学原则,并且掌握了分析学的一般性应用,还毕业于名牌大学,此人更有可能给企业带来价值。最好能拥有硕士学位。如果在其他领域还拥有一技之长,此人将是一只潜力股。
10. 不会用通俗语言来解释
数据科学家应该能用通俗易懂的日常用语来解释最复杂的问题,不能与现实世界脱节,这会导致你的解决方案无法被人理解,而且你需要花费一定的时间和精力来克服语言障碍。
虽然有很多重要的数据科学技能可以后天习得,但有些却是天生的。那些妨碍你进入数据科学领域的因素常常无法改变或纠正。对数据科学的热情以及掌握一定的技能,这是成功的关键。如果你只是假装有兴趣,或者并不具备重要的技能,总有一天,你会原形毕露。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29