
机器学习、大数据等岗位面试时遇到的各种问题总结
自己的专业方向是机器学习、数据挖掘,就业意向是互联网行业与本专业相关的工作岗位。各个企业对这类岗位的命名可能有所不同,比如数据挖掘/自然语言处理/机器学习算法工程师,或简称算法工程师,还有的称为搜索/推荐算法工程师,甚至有的并入后台工程师的范畴,视岗位具体要求而定。
自己参与面试的提供算法岗位的公司有 BAT、小米、360、飞维美地、宜信、猿题库 等,根据业务的不同,岗位职责大概分为:
平台搭建类
数据计算平台搭建,基础算法实现,当然,要求支持大样本量、高维度数据,所以可能还需要底层开发、并行计算、分布式计算等方面的知识;
算法研究类
文本挖掘,如领域知识图谱构建、垃圾短信过滤等;
推荐,广告推荐、APP 推荐、题目推荐、新闻推荐等;
排序,搜索结果排序、广告排序等;
广告投放效果分析;
互联网信用评价;
图像识别、理解。
数据挖掘类
商业智能,如统计报表;
用户体验分析,预测流失用户。
以上是根据本人求职季有限的接触所做的总结。有的应用方向比较成熟,业界有足够的技术积累,比如搜索、推荐,也有的方向还有很多开放性问题等待探索,比如互联网金融、互联网教育。在面试的过程中,一方面要尽力向企业展现自己的能力,另一方面也是在增进对行业发展现状与未来趋势的理解,特别是可以从一些刚起步的企业和团队那里,了解到一些有价值的一手问题。
以下首先介绍面试中遇到的一些真实问题,然后谈一谈答题和面试准备上的建议。
面试问题
你在研究/项目/实习经历中主要用过哪些机器学习/数据挖掘的算法?
基础知识
SVM 的推导,特性?多分类怎么处理?
LR 的推导,特性?
决策树的特性?
GBDT 和 决策森林 的区别?
如何判断函数凸或非凸?
解释对偶的概念。
如何进行特征选择?
介绍卷积神经网络,和 DBN 有什么区别?
采用 EM 算法求解的模型有哪些,为什么不用牛顿法或梯度下降法?
用 EM 算法推导解释 Kmeans。
用过哪些聚类算法,解释密度聚类算法。
聚类算法中的距离度量有哪些?
如何进行实体识别?
解释贝叶斯公式和朴素贝叶斯分类。
写一个 Hadoop 版本的 wordcount。
开放问题
给你公司内部群组的聊天记录,怎样区分出主管和员工?
如何评估网站内容的真实性(针对代刷、作弊类)?
路段平均车速反映了路况,在道路上布控采集车辆速度,如何对路况做出合理估计?采集数据中的异常值如何处理?
如何根据语料计算两个词词义的相似度?
在百度贴吧里发布 APP 广告,问推荐策略?
如何判断自己实现的 LR、Kmeans 算法是否正确?
100亿数字,怎么统计前100大的?
答题思路
用过什么算法?
最好是在项目/实习的大数据场景里用过,比如推荐里用过 CF、LR,分类里用过 SVM、GBDT;
一般用法是什么,是不是自己实现的,有什么比较知名的实现,使用过程中踩过哪些坑;
优缺点分析。
熟悉的算法有哪些?
基础算法要多说,其它算法要挑熟悉程度高的说,不光列举算法,也适当说说应用场合;
面试官和你的研究方向可能不匹配,不过在基础算法上你们还是有很多共同语言的,你说得太高大上可能效果并不好,一方面面试官还是要问基础的,另一方面一旦面试官突发奇想让你给他讲解高大上的内容,而你只是泛泛的了解,那就傻叉了。
用过哪些框架/算法包?
主流的分布式框架如 Hadoop,Spark,Graphlab,Parameter Server 等择一或多使用了解;
通用算法包,如 mahout,scikit,weka 等;
专用算法包,如 opencv,theano,torch7,ICTCLAS 等。
基础知识
对知识进行结构化整理,比如撰写自己的 cheet sheet,我觉得面试是在有限时间内向面试官输出自己知识的过程,如果仅仅是在面试现场才开始调动知识、组织表达,总还是不如系统的梳理准备;
从面试官的角度多问自己一些问题,通过查找资料总结出全面的解答,比如如何预防或克服过拟合。
产生背景,适用场合(数据规模,特征维度,是否有 Online 算法,离散/连续特征处理等角度);
原理推导(最大间隔,软间隔,对偶);
求解方法(随机梯度下降、拟牛顿法等优化算法);
优缺点,相关改进;
和其他基本方法的对比;
个人感觉高频话题是 SVM、LR、决策树(决策森林)和聚类算法,要重点准备;
算法要从以下几个方面来掌握:
产生背景,适用场合(数据规模,特征维度,是否有 Online 算法,离散/连续特征处理等角度);
原理推导(最大间隔,软间隔,对偶);
求解方法(随机梯度下降、拟牛顿法等优化算法);
优缺点,相关改进;
和其他基本方法的对比;
不能停留在能看懂的程度,还要:
对知识进行结构化整理,比如撰写自己的 cheet sheet,我觉得面试是在有限时间内向面试官输出自己知识的过程,如果仅仅是在面试现场才开始调动知识、组织表达,总还是不如系统的梳理准备;
从面试官的角度多问自己一些问题,通过查找资料总结出全面的解答,比如如何预防或克服过拟合。
开放问题
由于问题具有综合性和开放性,所以不仅仅考察对算法的了解,还需要足够的实战经验作基础;
先不要考虑完善性或可实现性,调动你的一切知识储备和经验储备去设计,有多少说多少,想到什么说什么,方案都是在你和面试官讨论的过程里逐步完善的,不过面试官有两种风格:引导你思考考虑不周之处 or 指责你没有考虑到某些情况,遇到后者的话还请注意灵活调整答题策略;
和同学朋友开展讨论,可以从上一节列出的问题开始。
准备建议
基础算法复习两条线
材料阅读 包括经典教材(比如 PRML,模式分类)、网上系列博客,系统梳理基础算法知识;
面试反馈 面试过程中会让你发现自己的薄弱环节和知识盲区,把这些问题记录下来,在下一次面试前搞懂搞透。
除算法知识,还应适当掌握一些系统架构方面的知识,可以从网上分享的阿里、京东、新浪微博等的架构介绍 PPT 入手,也可以从 Hadoop、Spark 等的设计实现切入。
如果真的是以就业为导向就要在平时注意实战经验的积累,在科研项目、实习、比赛(Kaggle,阿里大数据竞赛等)中摸清算法特性、熟悉相关工具与模块的使用。
总结
如今,好多机器学习、数据挖掘的知识都逐渐成为常识,要想在竞争中脱颖而出,就必须做到
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14