
工业大数据的众多生动案例
近日,首届中国(杭州)工业大数据产业发展高峰论坛在杭州举办。论坛上,工业大数据相关研究者、实践者济济一堂,“晒”出了工业大数据的众多生动案例,让你提前感知未来的工业大数据采集人体数据实现西服的“量体裁衣”,煤矿工地依靠智能化设备减少矿工数量……5月31日,首届中国(杭州)工业大数据产业发展高峰论坛在杭州举办。论坛上,工业大数据相关研究者、实践者济济一堂,“晒”出了工业大数据的众多生动案例。
1、个性化西服如何“量体裁衣”
观数智库创始人、《大数据》《数据之巅》作者涂子沛参加了贵阳数博会的李克强总理座谈会,总理以定制西装举例说明了大数据的作用。其实,在参加座谈会前,涂子沛也第一次定制了一套西服。穿上之后,他表示再也不想穿以前的西服了,因为从来没有感受到那么得体。
“红领”是一家定制服装生产企业。他到了这家工企业后看到,几千件西服没有两件完全一样,但仅从面料、颜色分辨不出。很多人的西服里面都有商标,很多人喜欢在这里绣上自己的名字或一句话,这就是个性化。每个流水线都有数据驱动,一条工序的数据清清楚楚地送到操作员工作台上。这个方案成本确实增加了,但是利润上升得更多。
2、陕北煤企如何减少矿工?
传统采矿业如何实现从人工采矿,到一个人都不用?北京大学教授、工信部原副部长杨学山之前去过在陕北一个煤矿企业的现场。当时,借助自动化设备,这家煤企624个人的产能,已经相当于今天大部分煤企五六万人的产能,相当于20年前中国最大的山西大同矿区20多万人的产能。
所以,整个产业链,包括采矿到后期的生产,跟人的关系越来越小。实现这些,就是信息、数据构成了自动化装备的基础。没有数据、没有数据化的装备是做不成。
3、沈阳“i5”数控机床的逆袭
这是一个装备发展过程中转型升级的最佳实践,其中,工业大数据承载着非常重要的作用。沈阳“i5”数控机床从开始研发,到今天在智能数控机床进入世界领先的行列,花了十年。前几年为何没有成功?因为数据缺失。
不管是材料、还是装备的发展,高端数控机床长期被国外控制,缺乏实践过程中的数据支撑发展不起来。模型怎么建,也需要数据支撑。但沈阳机床十年磨一剑,积累了数据,打造世界领先的智能数据机床。它还倡导新的商业模式,实现按使用小时收费。
4、可以实现在线3D预览的纸盒
纸盒是典型的个性化生产,各行各业要用的包装纸盒千差万别,上面又要印不同的文字、图案,这是非常适合做C2M的领域。
中国电信制造行业应用基地总经理陆晋军介绍,我们结合了相应的技术,实现线上个性化定制结合3D预览技术,让客户线上下单,可以看到给他设计的样式,还能做到在线直接3D预览,最后线上报价成交。当然,在生产中会有协同,在线平台要和生产平台打通。
由此延伸,他们还分析了很多领域,一些需要定制化的礼品、文具或包装物品的生产企业,都可以比较快速地实现C2M模式,提高效率、提升服务。
5、拥有1亿模型的零件数据库
这是20年前就出现了的零件库。德国Genius WEB2CAD开发Trace Parts,能集成到主流CAD软件的零件库中,直接在CAD软件中启动,支持零件搜索和3D视图,同时以DWG或DXF格式生成零件所有二维视图。
目前,这个零件库有1亿多种零件模型,设计人员可以进入下载这些模型。然后,把它组成产品再进行仿真,再把这些零部件交给供应商制造。这些零部件专业化、成本低、质量好,这种专业化的模式国内还比较少。
6、粉丝参与小米手机的功能设计
小米手机依靠几十万的粉丝,手机三分之一的功能由用户设计。通过建立智能手机设计平台,小米让用户参与设计,形成用户设计大数据,帮助改进产品,使之满足用户需求。
7、试衣间如何给设计师灵感?
ZARA门店的店长每天有一个考核值,向全球数据中心提供当天有多少件衣服被试,哪件衣服有多少人选进了试衣间但没有被购买,原因是什么?它的试衣间可以记录试衣的情况,甚至衣架上也装了传感器,通过不同方式来收集这个数据。
每家门店POS机数据实时回传数据中心,ZARA的快销品最多消耗两周就进行补货。通过POS机数据,设计师形成了一个巨大的知识库,客户最喜欢什么衣服、为什么衣服被多次拿起而没被购买,ZARA会最快把衣服进行修改,然后再次进入专卖店。
数据收集是至关重要的一点,门店的经理做KPI值,这是一件复杂的系统。ZARA将网络上海量的数据看成实体店前端的测试。此外,大数据缩短了生产时间,让生产端能够看清顾客需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14