 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		大数据使棉花行业供给侧改革成为可能
	国储棉轮出已经进行了一月有余,热度不断攀升,棉花价格居高不下,截止到目前,除5月30日单日成交率不足90%以外,其余单日成交率均维持在97%以上,最高成交价格更是高达14350元/吨。然而,今年初,棉花市场并非如此景象:市面上很多棉花都无人问津,不少业内人士表示行情不好,有时亏本都做不到生意。现如今,大家纷纷猜测,难道是国储棉激活了整个市场?可是回忆去年,国储棉拍卖却远不如现在这般红火:累计成交量(6万多吨)仅占轮出资源总量(100多万吨)的6.34%左右,成交结果十分惨淡。同样是棉花市场,同样是国储棉,前后反差竟然如此之大,很多人不禁担忧,行情波动真的没法预测、没法控制吗?再者,近来国储问题频发:越来越多的贸易商参与竞拍,未来棉花价格走向难以预测;拍储成交后出库速度太慢,违规收费时有发生。棉花交易市场已经呈现紧张氛围,一定程度上也引起了部分纺企的恐慌心理。
   棉花市场行情波动如此之大,问题究竟在哪?笔者认为,主要原因还在于目前的棉花交易大体采用比较传统的经营模式:成交总是建立在较为主观的判断基础之上,资源信息也无法大范围流通。加上市场本身波动较大,这种方式显然已经无法满足当下的消费需求。从交易商的角度看,交易双方需要耗费大量的时间和成本来找货和谈判,运输过程中还要承担很大的风险,而且选择范围非常有限。从市场的角度看,这其实造成了整个行业内人员、资本、时间以及物料等资源的浪费:每一次交易都需要重复冗长的流程;各交易方获得的资源、经验都无法在整个行业内进行充分的传播与共享;交易所需的时间和成本总会被挤出一部分用于风险控制,而且往往并没有多大效果。说到底,还是因为交易过程中存在种种不确定性:无法实时了解市场行情,无法随时获取资源信息,无法尽快掌握合作对象及其货物信息。如果棉花行业也有专业的大数据分析,并积极推进供给侧改革,信息不透明、资源不共享等问题将得到大幅度改善。
   以互联网为基础的大数据,是一个行业资源信息的总和,来源于无数渠道,提炼为有效信息,而后才能为行业所用。其最核心的价值在于能够快速地、对海量数据进行存储和分析。相比现有的其他技术,大数据“廉价、迅速、优化”三方面的综合优势是最明显的。因此,无论是对于互联网公司,还是整个行业,快速掌握大数据技术已经成了决胜性战略。大数据是技术,供给侧改革是经营模式。当下中国经济所面临的困境,仅从需求侧入手已经很难有所突破,因此供给侧和需求侧相结合才是结构性改革。提高供给质量,优化资源配置,扩大有效供给,让供给侧与需求侧相互适应,从而提高全要素生产率,是所有行业都应该追求的终极目标。如果棉花行业也有专业的大数据分析,并进行有效的供给侧改革,产能升级、去库存、供需对接都可以实现。如此一来,棉花生产、交易、消费等环节都能高效运转:棉农会根据最科学的需求数据去种植棉花;买卖双方会在适当的时机、以最合理的价格和最合适的对象进行交易。各环节效率提高了,资源利用率也会随之提高,交易成交率亦是如此。如此一来,供需对接、零库存将不再是一句空话。
   比如棉庄,作为一家以棉花B2B电商平台为开端,定位于为棉花交易提供服务的互联网企业,一直在努力构建棉花行业大数据体系。依托现有的平台(包括web端和APP端),棉庄努力扩大信息来源渠道,把现有的所有资源整合在一起,从需求点切入,供用户选择;同时不断完善数据分析对比功能,为大家选择货物提供最直观的判断标准。此外,定位于棉花交易服务平台,棉庄将查询与交易功能做了严格的区分:棉庄货架中罗列的都是精准、可出售的现货;而资源搜索则涵盖了所有货源,质量报告可随时随地进行查询。通过多维度的数据分析,棉庄正在渐渐地向行业大数据靠拢,为棉花产业链所有参与者提供数据参考,从而使棉花行业供给侧改革成为可能。 
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23