
法律大数据带来了什么
司法信息大公开,今天的法律数据日益呈几何倍数增长。法律大数据带来的变革能否带来数据质和量上的提升呢?
目前,对于“什么是法律大数据”,法律界并没有统一明确的说法。套用维克托关于大数据的认识,我们不妨将法律大数据理解为:以一种前所未有的方式,通过对海量法律数据进行分析,对法律问题进行预判,获得巨大价值的产品和服务,或得出新的认知、深刻的观点和主张。法律大数据可能改变法律服务市场及组织机构框架,甚至改变政府与公民的关系。
法律大数据的现状事实上,在没有形成大数据这个概念及实践前,法律数字化资源早已存在,以北大法宝、北大法意、中国知网法律数据库等法律电子数据为代表,基本构成了中国法律专业人士的主要法律信息检索工具。
法律数字化资源早已成型2014年1月1日《最高人民法院关于人民法院在互联网公布裁判文书的规定》施行,要求各级人民法院应当在裁判文书生效后七日内按照规定完成技术处理在中国裁判文书网公布。随着司法信息大公开,出现了无讼、openlaw、九章等民间资本运作的法律数据库。中国裁判文书网在民间数据库某种压力的倒逼之下,于去年华丽转身,改版后的网站以强大的高级检索功能迅速得到业界广泛赞誉,更重要的是其数据来源不仅权威,而且免费。2016年3月31日最高人民法院推出的“法信——中国法律应用数字网络服务平台”正式上线,业界称之为中国版的“Westlaw”。然而法律大数据的作用远不止于此。
它并不是一堆数字化资源法律大数据并不等同于传统的法律数字化资源。
首先,传统的法律数字化资源在量上应比法律大数据概念下的数据资源要小很多,法律大数据应该是指需要处理的数据量过大,已经超出了一般电脑在处理数据时所能使用的内存量,因此必须改进处理数据的工具,采用新的处理技术,使得人们可以处理的数据量大大增加。
其次,法律大数据并不能满足于传统法律数据库单纯的法律信息汇总分类整理,法律大数据最核心的功能应是预测,通过海量的法律数据分析,形成对特定法律问题的裁判预测,进行同案类推,甚至对案件时长、难度、证据要求、胜诉概率、赔偿数额、量刑长短进行预判,推进人工智能发展,实现计算机的自我学习与完善。
法律大数据带来了什么?首先,法律数据行业可能面临重新洗牌。不管是Westlaw还是LexisNexis,抑或是中国本土的北大法宝、法意,虽然其固有优势明显、基础雄厚,但在大数据的浪潮下,官方数据统一开放,却可能使各家数据公司站在同一起跑线上,谁的大数据挖掘能力强,就可能在新一轮的竞争中脱颖而出。同时,数据公司生存模式也可能成为新一轮的竞争焦点。
其次,法律实践效能递增。对律师行业而言,法律大数据有助于律师对案件进行科学合理的预判,甚至可以预估案件审理法官的裁判倾向,对案件赔偿数额、诉讼周期、法律适用等做出分析,甚至借助系统自动生成法律文本,从而显著地节约法律实践成本。对法院系统而言,很可能在不远的将来,马克斯·韦伯提到的“自动售货机”——只要输入案件证据材料,法院就会自动吐出相应判决——将成为法院的真实写照,机器通过海量数据对比,筛选同类案件,给出参考判决意见,促进类案同判和量刑规范化。
再次,法学研究范式转变。南京邮电大学信息产业发展战略研究院院长王春晖表示:“法律大数据很有可能是一场法律研究范式的革命。”
大数据的到来,可能加剧两种法学研究路径的分化,一种继续保持传统的法学教义分析方法,另一种实证研究路径可能加快转向大数据全样本的分析范式,而谁掌握大数据资源、大数据分析工具,则能快速占领实证法学研究的高地。
大数据的引入还可能改变传统法学研究单兵作战的模式,集团化或团队协作可能在不远的将来成为实证法学研究新模式,而资本可能进一步渗透这种法学研究模式,成为幕后组织运作的智库推动力。可以预计,各种民间的专业化大数据研究机构将不断兴起,法律数据分析师、知识管理师将部分取代传统专家型地位,法学研究价值将不断提升,甚至成为专业服务传统律所、政府购买服务对象的第三方机构。
法律大数据来势汹涌,但面临的瓶颈也是显而易见的。长期从事信息公开研究的上海政法学院肖卫兵教授表示:法律大数据的实现离不开数据的可得性,政府的工作重点仍应该放在信息开放维度上。政府在明确数据发布来源之后,应同时确保数据来源真实完整,并鼓励民间竞争,充分挖掘数据深度价值,提升数据附加值,使得公众可以轻松便捷地获取、分享和受益于公开透明的政府、行业及司法数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29