
如何用Python高效地学习数据结构
今天的每日一答,我们来看看如何高效地学习一门语言的数据结构,今天我们先看Python篇。
所谓数据结构,是指相互之间存在一种或多种特定关系的数据类型的集合。
Python在数据分析领域中,最常用的数据结构,莫过于DataFrame了,今天我们就介绍如何高效地学习DataFrame这种数据结构。
要学习好一种东西,最好给自己找一个目标,达到了这个目标,我们就是学好了。一般,我在学习一门新的语言的数据结构的时候,一般要求自己达到以下五个要求:
第一个问题:概念,这种数据结构的概念是什么呢?
第二个问题:定义,如何定义这种数据结构呢?
第三个问题:限制,使用这种数据结构,有什么限制呢?
第四个问题:访问,访问这种数据结构内的数据的方式是什么呢?
第五个问题:修改,如何对这种数据结构进行增加元素、删除元素以及修改元素呢?
好,今天我们就来回答一下以上五个问题。
第一个问题:概念,这种数据结构的概念是什么呢?
数据框是用于存储多行和多列的数据集合,下面我们使用一张图片,形象地讲解它的内部结构:
OK,这个就是数据框的概念了。
第二个问题:定义,如何定义这种数据结构呢?
DataFrame函数语法
DataFrame(columnsMap)
代码举例:
>>>df=DataFrame({
'age':Series([21,22,23]),
'name':Series(['KEN','John','JIMI'])
});
>>>df
age name
0 21 KEN
1 22 John
2 23 JIMI
OK,这个就是定义数据框DataFrame的方法了。
第三个问题:限制,使用这种数据结构,有什么限制呢?
一般而言,限制是对于这种数据结构是否只能存储某种数据类型,在Python的数据框中,允许存放多种数据类型,基本上对于默认的数据类型,没有任何限制。
第四个问题:访问,访问这种数据结构内的数据的方式是什么呢?
访问位置 | 方法 | 备注 |
访问列 | 变量名[列名] | 访问对应列 |
访问行 | 变量名[n:m] | 访问n行到m-1行的数据 |
访问行和列 | 变量名.iloc[n1:n2,m1:m2] | 访问n1到n2-1列,m1到m2-1行的数据 |
访问位置 | 变量名.at[n, 列名] | 访问n行,列位置 |
代码举例
>>>df['age']
0 21
1 22
2 23
Name:age,dtype:int64
>>>df[1:2]
age name
1 22 John
>>>df.iloc[0:1,0:2]
agename
0 21 KEN
>>>df.at[0,'name']
'KEN'
>>>df[['age','name']]
agename
021KEN
122John
223JIMI
>>>
第五个问题:修改,如何对这种数据结构进行增加元素、删除元素以及修改元素呢?
这个问题,我并没有在课程中跟大家讨论过,主要是为了避免大家觉得学习起来很难。
也因此,这篇博文到了这里才是真正的干货,之前的那些都是课程中出现过的内容了,哈哈,
修改包括:
1、修改列名,行索引
2、增加/删除/修改行
3、增加/删除/修改列
好,下面我们上代码:
df=DataFrame({
'age':Series([21,22,23]),
'name':Series(['KEN','John','JIMI'])
});
#1.1、修改列名
>>>df.columns
Index(['age','name'],dtype='object')
>>>df.columns=['age2','name2']
>>>df
age2name2
021KEN
122John
223JIMI
#1.2、修改行名
>>>df.index
Int64Index([0,1,2],dtype='int64')
>>>df.index=range(1,4)
>>>df.index
Int64Index([1,2,3],dtype='int64')
#2.1、删除行
>>>df.drop(1)
age2name2
222John
323JIMI
>>>df
age2name2
121KEN
222John
323JIMI
#注意,删除后的DataFrame需要一个变量来接收,并不会直接修改原来的DataFrame.
>>>newdf=df.drop(1);
>>>newdf
age2name2
222John
323JIMI
#2.2、删除列
>>>delnewdf['age2']
>>>newdf
name2
2John
3JIMI
#3.1、增加行
>>>df.loc[len(df)+1]=[24,"KENKEN"];
>>>df
age2name2
121KEN
222John
323JIMI
424KENKEN
#3.2、增加列
>>>df['newColumn']=[2,4,6,8];
>>>df
age2name2newColumn
121KEN2
222John4
323JIMI6
424KENKEN8
以上就是全部五个问题的答案了,通过自问自答这五个问题,我们就可以高效地学习某种数据结构了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14