
抓住大数据时代机遇 用数据更好地服务于税收工作
随着“互联网+税务”时代的来临,税收数据的应用成为税收管理变革与创新的关键,作为基层国税部门,应抢抓大数据时代机遇,坚持用数据说话、用数据改进管理、用数据更好地服务于税收工作,使纳税人拥有满满的获得感。
一、大数据对国税工作的影响
大数据主要是数字化的可以利用的各方面海量信息。多年来,国税部门面对大数据的发展,进行了积极应对和探索。
(一)促使税收工作转型。
大数据伴随着信息化,推动征管方式不断变革,大致经历了三个阶段:上世纪90年代后期,山西省国税局独立开发一套税务征管信息系统,数据存储在各基层彼此互不关联,仅仅方便查询统计;2000年,各地搭建专用的广域网络,实现了省市县局数据局部共享,利用率有所提高;2013年,随着“金税三期”工程推广,建立了全国统一的税务信息系统,涉税信息涵盖国地税各税种,申报征收、企业财务、发票信息通过申报采集平台汇集到国税总局的数据库中,实现全国税务系统内互联互通,国税部门由此迈入大数据时代。
(二)纳税评估应用而生。
为防范税收风险,从省局到基层成立了专业数据分析机构,充分挖掘数据资源服务于税收工作。通过税收与经济运行中的宏观微观数据,开展关键指标比对,进行税收风险、政策效应、经济运行分析,发现税收征管中存在的风险点,准确提出加强组织收入的措施,同时折射经济社会发展中值得关注的问题,为各级党委政府宏观决策提供意见和建议。比如,太原高新国税为适应大数据时代工作特点,根据国税总局税收专业化要求,成立了风控中心和三个专业的纳税评估科,通过数据分析,进行实地评估调查取证,防范税收风险,保证国家税收,提高纳税人对税法的遵从度。
二、盘活数据资源,更好地服务于基层国税工作
(一)拓宽数据采集能力,提高数据准确率。一是大力推广网上办税平台。纳税人财务系统和税务征管系统对接是提高数据采集质量的主要方法,推行网上申报是大趋势,可以使纳税人申报和国税部门采集的数据完全一致。二是把好数据入口关。涉税大数据主要来源于一线人员的采集,工作的细致程度直接关系涉税大数据的质量,要尽量减少因工作失误导致的数据失真,进而影响数据分析评估效果。三是调查数据严把关。经过数据分析得出的涉税疑点,应认真核实查证,对证据确凿的要补税、加滞、处罚,并及时反馈结果;对确实没有问题的撤案上报,帮助上级修正数据分析模型,促进分析质量不断改进。
(二)强化数据上下合力,促进分析科学性。一是上级部门为基层工作提供明确标的。上级部门通过掌握的第一手数据资源,进行数据科学分析,深度挖掘数据信息,对被评估企业行业经营状况、财务数据等进行分析,如:以数据为基础构建重点行业的评估模型,针对每个行业的特点,调整模型中参数的权重,使分析的疑点更加准确可靠,推动基层工作有的放矢。二是发挥基层人员数据分析能动性。首先,基层对所管企业的经营特点比较了解;其次,有些企业偷税但各项分析指标表现却很好,仅仅靠数据分析模型,就可能漏掉很多问题企业,相较而言,一线人员有其自身优势,对发生的涉税问题更敏感,应有效发挥其能动性,促使数据分析更完整。
(三)挖掘数据风控效力,提升税法遵从度。一是运用大数据防控风险。通过数据网络平台,发挥好“数据透视镜”的作用,比如被评估企业行业经营状况、业务单位发票信息等申报汇总数据进行分析比对,就能对所辖企业进行深度挖掘。2015年以来,太原高新国税通过电子邮件、短信等方式向300余户次纳税人推送风险提醒服务18项,引导纳税人根据提醒的涉税风险疑点进行自查补税100余万元。二是运用大数据做到应收尽收。结合大数据,加强纳税评估,挖掘税收潜力,最大限度地堵漏增收,不断提高征管质量与效益。2013年以来,太原高新国税局以“金税三期”工程和电子底账系统为依托,在申报期结束后,根据当月申报数据迅速运用电子化决策包和电子底账系统自动核对申报数据和发票流向,对税负明显异常、抵扣明显异常、进销明显不符等12项高风险点重点分析,三年来,累计评估入库税款12736万元,为服务经济大局做出了贡献。
(四)释放数据扫描威力,找准服务着力点。一是运用大数据提供优质服务。充分释放纳税人数据的效应,找出各项业务办理的共性规律,用涉税数据为纳税人“扫描体检”。太原高新区国税局针对国家陆续出台的小微企业税收优惠政策,通过数据采集、数据比对逐户筛选发现应享未享政策优惠企业,通过微信、短信平台等温馨提示方式对纳税人再提醒。2016年共对5户小微企业补充更正,享受减免税额3万元。二是运用大数据持续改进办税服务。纳税人在办税过程中积累了海量的数据,蕴含着他们的办税习惯和行为特征,把这些数据分析好、应用好,就能找到改进服务的‘金钥匙’。比如,根据纳税人领用发票在周二比较密集的时间习惯,太原高新国税局要求办税服务厅当天扩大发票窗口比例;针对新办小型企业申报办税不及时比例较高的问题,在首次申报前跟踪提醒。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29