
守望先锋数据分析:卢西奥上手难度排第三
我一直以为卢西奥(DJ)是个很容易上手的英雄,也可以说是入门英雄吧,但是看了国外玩家做的数据时候,发现DJ的难度仅次于源氏和闪光,有点让人捉摸不透,各位看官你们怎么看呢?
今日,国外一位高手对守望先锋里海量的玩家数据做了一个大数据分析,他采集国外的战绩查询网站上面的所有玩家数据,并根据这份数据样本,分析出了所有英雄的操作难度上限,得出了一个守望先锋操作难度上限数据表。
这个算法的最基本原理是根据所有玩家使用的英雄时长,以及这个英雄的胜率,来分析出练习时间跟胜率的关系,据此来得出操作难度系数。简单的说,练习的时间越久但是胜率提高又很慢的英雄,说明这个英雄的操作上限就越高。以下最终数据分析的结论:
根据这个表,我们可以看到几个不出意外的结果:
1、堡垒跟托比昂毫无疑问是最容易上手的,所以操作难度上限低比较合理。
2、整体上这个表格的走向,大部分都是跟射击精准度密切相关,射击精准度要求越高,难度越高,也符合预期。
3、一部分英雄如猎空源氏他们的高难度,属于技能本身特点,路霸的钩子也很关键,所以这些英雄需要很高的操作上限,也是合理的。
有几个结果让人略感惊讶:
卢西奥的操作难度排在第三,仅次于源氏猎空,天使跟禅雅塔的操作难度比法老之鹰还要高。这又是什么原因呢?
从直观上来看,辅助英雄的操作技巧难度要比其他英雄低得多,但是对于意识的要求极高。对于这个数据分析结果,我们认为这是数据样本的问题。
因为这个作者的计算方法基础是单个英雄的时长与胜率之间的关系,高系数意味着辅助英雄要练习非常非常长的时间,才能提升胜率。辅助英雄都非常依赖队友的发挥,指望辅助英雄自己Carry全场夺得胜利实在太难。所以从数据上看,这3个英雄之所以系数高,是因为辅助英雄就算练得非常的强,依然很依赖队友来提升胜率。
至于为什么卢西奥这么高,应该是因为这个英雄用的人实在太多了,每个队伍必备,加上很多新上手的玩家都会用,几乎人手必备一个卢西奥随时补位,拉低了卢西奥的整体胜率。
关于这个数据的作者本人的一些FAQ:
1、这个系数不意味着这个角色的强度与重要性。
2、算法的缺陷:算法本身存在很多无法避免的缺陷问题,比如英雄的玩法开发不足,数据样本数量有限等。
3、数据来源:通过python写的机器人采集了masteroverwatch的数据。
4、这个数据的含义:达到稳定的水准需要消耗的时间系数。这个数据并不针对特别人群,比如某些CSGO职业高手就能很快达到很高的守望先锋的水准。
关于这个操作难度,你怎么看?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14