
以大数据思维培养自己,累积工作经验
什么叫工作经验?工作经验怎么来的?人们的工作经验其实是由「数据亅构成的;这话怎么说?且听我为您道来。
在工作中,我们为什么能得到经验?这是因为职场每天产生了各种大大小小、正式、非正式的数据;例如有销售数据、财务数据、运营数据、业务分析数据、生产数据、考勤数据、管理指标(KPI)、不同项目执行时间进度等等。这些数据在不同岗位的工作者经过一段时间的接触、学习、体会、运用之后,渐渐形成我们对未来执行或规划手上各类业务的“能力”,这个“能力“即所谓职场经验。
而人们之所以会有「能力亅高低、强弱的差异,就在于每个人对身边数据的理解、掌握、运用的方式及敏感度不同等。这边所谓的「掌握亅是指对各类数据的接触、收集、观察、处理等。数据的掌握力对于将来面对数据时的理解及运用有很大影响,这是职场经验的重要形成因素。不过「掌握力亅会因职位性质、职位高低、职位重要程度、年资、知识、人脉等而有差异与限制。
职场经验是由数据构成的,不单白领适用,即便像厨师、技术工、保洁工等蓝领技术或体力活儿,也一样适用这观点;以厨师为例,食材的选择、保存、料理、调味料的配比、火候掌握、时间控制,无一不是数据,这些数据组成了他们的烹饪经验与能力。其中有些人喜欢对厨房各类数据深入去收集、理解、钻研与运用,因而往往能够成为顶尖的大厨,而那些对掌握基本烹饪数据就满足的人,就成了一般厨师。其他职能岗依此类推。
人们过去工作累积的「数据亅形成了经验,足够多的经验会形成知识。经验与知识透过“归纳”及“演绎”两大方式,会再加工形成新的知识与解决问题的能力。在面对某些决策过程、突发状况或全新事务时,我们会在心中调取过去数据来作为决策或解决现在问题的参考,这个“调取”过程产生的解决方案,就是对过去数据的「解读亅。如果对已有数据的理解知识不够,或过去对数据的理解就是错误的,或是内、外部可参考的数据不够多(或难以获取),那么“解读”时就易产生偏差或错误,造成在工作上的效率变差、或做错事、或误判形势用错解决方法等状况发生。
而职场更常见到的是因为部门或个人的本位主义、利益关系、面子问题等各类原因,以致出现明明同一份数据结果,却各自表述出不同结论的情况出现,其中最恶劣的就是操弄数据欺上瞒下。若各自表述的某一方权力较大,或论点被接受了,但它其实是错的,那么这个数据的「解读亅将形成公司及个人未来处理类似情况的依据。对数据的曲解、误用,等于站在错误的基础上去做事情,如此,即便每个员工兢兢业业的在工作,最后得到结果会是好的吗?
这几年流行讲大数据,一样可以套用在工作经验上。企业进行大数据的收集、梳理、分析,是希望数据为企业带来更大的价值,产生更多的效益。而工作经验的大数据呢,则是指跳脱我们自身的职能岗范围,扩大我们对「数据亅的接触来源;例如培养第二工作技能,学习阅读不同业务报表,跳脱目前职务角色常常换位思考,扩大人际交友圈多认识与自己领域不同的朋友,不畏开口向别人请益,多参加培训与研讨会活动,培养涉略不同知识的习惯等等都是。而在移动网络时代,社交平台上到处可见的干货文章,还有MOOC等资源,这些都是摄取多元数据最佳的管道。
工作者以大数据思路培养自己,绝对是笔好投资,那些在职场能脱颖而出,活出精彩价值的人,正是擅用「数据亅提升自己视野与能力的最佳写照。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29