京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析哪家强?听数据分析师论R和Excel
Excel 是一款很好用的数据分析工具,但是你分析数据时只有 Excel 这一款工具的话,则会大大影响工作效率。相比之下,R 工具更好用,而且提供的工具集模块更完整。
我从事数据分析工作已经有十年之久。最初是出于工作需要,我的经理给我一堆数据,我需要处理这些数据。当时我一直使用的工具是 Excel,因为这是我熟练掌握的一款工具。三年前,我开始接触到 R,一开始因为功能太多而坚决抵制使用。后来我开始琢磨如何使用。现在我基本不怎么使用 Excel 了。这只是我个人的观点,但是如果你要分析数据,R 更胜任这项任务。下面来说说为什么 R 更适合数据分析。
这两款工具的使用方法截然不同。使用 Excel 时,可以通过鼠标点击完成大部分工作,你可以访问界面内不同位置的各种工具。因此 Excel 非常便于使用(熟能生巧),但是用 Excel 处理数据非常费时,而且如果接手一个新项目,你必须单调地重复这些流程。使用 R 时,则通过代码完成所有操作。你把数据载入内存,然后运行脚本来研究并处理数据。这个工具可能不够人性化,但是有以下几点好处。
我认为,从概念上来说,R 更便于使用。如果你在处理多列数据,虽然你只是在处理单个任务,但是却会看到所有的数据。而使用 R 时,数据都在内存中,只有调出数据才能看到。如果你在转换或计算,你会处理相关列或行的子集,其他所有数据都在后台。我觉得这样更便于关注手头的任务。完成任务后,可将其保存在某个数据帧中,其中只包含所需的列或行数据。你建立了正确的数据集,可解决当前的问题。这样做看似无关紧要,但实际上大受裨益。
借助 R,就可以对其他数据集轻松重复相同的操作。因为所有数据都是通过代码进行处理和研究,因此对新的数据集执行相同的操作也就轻而易举了。使用 Excel 时,大多数操作都是通过鼠标点击实现,虽然用户体验不错,但对新的数据重复操作却非常费时而枯燥。而 R 只需载入新的数据集,然后再次运行脚本即可。
实际上,用代码操作也便于诊断并共享你的分析结果。使用 Excel 时,大多数的分析结果都基于内存(数据透视表在这里,公式编辑器在另一个表格上等)。而在 R 中,通过代码执行所有操作,一目了然。如果你在修正一个错误,你很清楚在哪里操作,而如果你需要共享分析结果,只需复制粘贴代码即可。在线查找帮助时,你能准确说明所用数据,并提出具体的问题。事实上,大多数时候,你在线提问时,人们都是直接贴出准确的代码,来解决你的问题。
R 中的项目组织更简单。在 Excel 中,我要准备一系列表格,可能还要准备多个工作簿,然后适当命名,而且各文件名不得重复。我的项目备注分别保存在各个文件中。我的 R 项目组织单独设有一个文件夹,我处理过的所有内容都放在其中。清理数据、探索性图表及模型。这样便于我理解和查找,也为与我一起工作的其他人提供方便。当然,Excel 也能做到井井有条。我觉得 R 的简洁性更便于使用。
上述几点只能说是锦上添花,而并不是必不可少。在没有这些功能之前,我也用了好几年 Excel,你应该也一样。现在,我想讲讲 R 和 Excel 真正的区别。我想说的是,除了以上那些花哨的小优势之外,R 更适合用于数据分析。原因如下。
你可以把任何数据载入 R。数据的保存位置或保存形式并不重要。你可以载入 CSV 文件,也可以读取 JSON,或者执行 SQL 查询,抑或提取网站。你甚至还可以在 R 中通过 Hadoop 处理大数据。
R 是一个完整的工具集,使用的是数据包。在分析数据时,R 比 Excel 更实用。你可使用 R 执行数据管理、分类和回归,也可以处理图片,并执行其他所有操作。如果机器学习是你的专业,那能想到的任何算法都是小菜一碟。目前,R 可用的数据包逾 5,000 个,因此无论你要处理什么类型的数据,R 都能应付自如。
R 的数据可视化效果非常卓越。说句实话,Excel 的图表非常出色,简单易懂。但 R 的效果更好。我觉得这是 R 最实用的功能之一。借助 ggplot2,你可以快速创建所需的各种图表,并根据图表形状自行调整。在你熟悉了如何用 ggplot2 创建一个图表后,任何其他图表都不在话下。ggplot2 还能制作更多类型的图表。你能用 Excel 创建散点图矩阵吗?用 R 就能轻松创建这种矩阵,CDF plot 也是如此。Excel 棋差一招。
Git 版本控制。我一向习惯保存多个版本的分析结果。Git 是至今为止我找到的最好用的工具。我使用 RStudio 作为编辑器,其支持项目。创建一个项目仓库,然后你就能跟踪数据研究的不同版本。你可以创建不同版本的 Excel 文件,但是这些保存的二进制文件无法显示相互之间的更改部分。而 R 非常简单。
我已经说了很多理由。总之,Excel 是一款不错的数据分析工具。我相信它能不负众望完成所有任务。但是,如果你只有这一款工具,则会大大影响你的工作效率。相比之下,R 更好用,而且提供的工具集模块更完整。而缺点在于不是非常易于上手,用户一开始相对要花很多时间学习使用。如果坚持下去,就会有所收获,不仅对数据更了解,还提高了自己的能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06