京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据科学家炙手可热
21世纪最性感的工作是数据科学家。这一美国商学院期刊表示,数据科学家集“数据黑客、分析师、沟通大师和受信任的顾问”于一身,并指出,这种技能的结合极为罕见。
这正是全球各地诸多企业的问题所在。尽管公司经理深知大数据所能带来的效益,但他们难以找到拥有合适技能的人才。
利用大数据的潮流毫无放缓迹象。管理咨询公司埃森哲 (Accenture)去年调查了600家美国和英国公司,结果发现有三分之二的公司在之前18个月任命了负责数据管理和分析工作的高管。即使是尚未设立此类高管职位的公司,也有71%准备在不久的将来作出任命。
招聘顾问也表示,对数据分析专家的需求正在飙升。专注信息技术领域、在伦敦和阿姆斯特丹设有办事处的Cititec表示:“今年前六周,我们收到的大数据招聘请求与之前六个月一样多。我们估计,该数字今年将比去年高出100%,甚至更多。”
的确,大数据正快速成为IT招聘机构的重要专长。“我们现在拥有一位大数据专家,而一年前还没有,”Cititec补充道,“这是一块竞争激烈的市场,有很多公司竞相争夺资深人才。”
埃森哲北美金融服务数据分析部门执行董事布莱恩•麦卡锡(Brian McCarthy)认为,全球及各行各业的需求意味着,数据分析技能严重供不应求,尤其是在美国和英国。
他说:“背景适合从事数据科学家工作——计算机科学、统计学、机器学习——的毕业生正在走出校园,但他们的数量还不够。”
麦卡锡补充道,尽管许多公司转而聘请合同工——埃森哲调查表明,有近60%的公司求助于外部分析师和咨询顾问——但它们仍无法找到需要的人才。
Cititec称,这种紧缺十分严重,以至于英国承接IT外包工作的资深数据架构师或业务分析师可日赚500英镑至650英镑。在该领域资质最为优秀的一端,博士级别的数据科学家能够拿到9.5万英镑的高额年薪。
“甚至连海外外包也无法解决这个问题,”麦卡锡指出,“因为印度、中国和巴西等新兴经济体没有足够的资深人才。”
人才紧缺似乎还将持续数年。
埃森哲在今年发布的《数据分析在行动:通向高投资回报率之路的突破与壁垒》(Analytics in Action: Breakthroughs and Barriers on the Journey to ROI)报告中预测,到2018年,光是在美国和英国,需要具备高深科学、技术、工程和数学(STEM)知识的职位的增长速度将是其他职业的五倍,是金融 服务等信息密集型行业职位的四倍。
报告称,新兴经济体培养出STEM人才的数量高于发达经济体,但仍无法满足全球的潜在需求。
确实,埃森哲卓越绩效研究院(Institute for High Performance)在去年的一次调查中研究了美国、中国、印度、英国、日本、巴西和新加坡对数据分析经验的需求。调查发现,到2015年,所有这些 国家(除中国外)都将面临胜任分析科学家工作的博士毕业生数量净短缺的问题。
“美国、英国、日本、新加坡和巴西几乎将肯定遭遇高端人才的严重短缺,”埃森哲表示,“尽管印度的数据分析服务行业蓬勃成长,但它也将难以培养出足量的博士生来填补所有新的数据分析科学家岗位。”
例如,美国新增数据分析专家职位的数量将占全球新增总量的44%,但该国只能供应23%的人才,导致近3.2万人的缺口。
只有中国似乎出现了少量的过剩,但埃森哲警告称:“如果对数据分析的需求加速升高,那么中国也将可能出现短缺。”
未来与数据分析相关的就业岗位会在千万左右,而目前国内企业对专业数据分析师的需求缺口在数十万之众,而具有数据分析基础工作的人员更是上百万的缺口。
因此,CDA数据分析师培训应运而生,不需懂数学算法,不需懂统计概率,不需懂计算机编程。课程更不使用复杂软件,不使用公式模型,整个培训为在数据分析领域需快速入行、需直接上手、人士提供了一套最有效的解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12