京公网安备 11010802034615号
经营许可证编号:京B2-20210330
利用大数据发展小微贷业务
大数据最早由麦肯锡公司提出,麦肯锡认为,数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。随着互联网产生的大数据,各种基于互联网的小微贷不断涌现并在互联网金融中展现出巨大影响力,农信社应积极挖掘、利用大数据来促进小微贷业务的发展,使自身在愈加激烈的竞争中立于有利之地。
大数据带来小微贷发展机遇
大数据降低了信息搜寻成本。银行在搜寻小微企业信息、审核贷款时需要投入较高的人力和物力成本,付出较高的边际成本。而在信贷业务中运用大数据的核心优势恰好在于解决信息不对称,降低信贷业务成本。社交化网络和电子商务平台在发展中积累了大量数据,对数据进行挖掘、分析得出的企业信息,比企业在现实中发布的信息更具有可信度,也具有更大的经济价值。以阿里小贷为例,阿里小贷公司利用淘宝、天猫平台的商户历史交易、客户评价、信用记录等数据,进行统一评估计算分析,作为客户贷款的标准。这样既有效解决了信息不对称问题,同时也降低了信息搜寻成本。互联网环境下产生的大数据,有效降低银行与小微企业之间信息不对称的问题,为小微贷业务的发展带来了机遇。
大数据提供有效的风险管理方法,推动风险管理理念的根本性改变。在传统的信贷模式下,企业可用于抵押的资产与企业信贷可获得性成正比,但是贷后持续监管不足、贷款损失后抵押品变现难度大与变现价值低,这种模式并不能有效为金融机构避免损失。况且对小微企业而言,足值担保和抵押是很难达到的。大数据时代的风险管理从依靠人力转为依靠电子系统,重点监控企业的持续经营、现金流量、考察企业的交易数据、客户信用评价记录等。大数据提供了有效的风险管理办法,与解决小微企业融资难的思路相契合。如阿里小贷基于大数据平台推出的“按日计息、随借随还”的小额信贷产品,不仅解决了客户短期资金需求,而且不良贷款率远远低于银行传统模式下的小微企业贷款。
大数据环境下农信社小微贷的发展对策
深挖数据、加强信贷链条与大数据的融合。农信社应全面树立“数据立行”的理念,积极开发、建立数据平台、深挖数据,将大数据融入农信社信贷业务链条,以数据分析结果为依据,全面实现小微企业业务流程、风险管理的标准化。农信社可以深耕供应链金融领域,建立供应链数据平台,通过与本地核心企业合作,获取核心企业的上下游企业的相关数据,以数据处理分析结果为依据,向上下游小微企业提供信贷服务。同时,电商、社交网络平台沉淀大量的客户信息,这些信息都从不同角度反应客户的资金、信用状况,农信社应积极与电商、社交网络平台进行合作,共享客户信息,促进小微企业贷款链条与数据的融合。
构建O2O电商平台,培育农信社服务生态圈。虽然农信社在发展过程中积累了一定的结构化金融数据,但这些数据在小微贷业务中是远远不够的,相反互联网发展所产生的大量电子商务、社交、生活数据便可实现小微贷业务的快速、精准定位。所以,从获取数据是未来银行发展的第一要务来讲,农信社构建自身的电子商务平台是必走的道路。拥有自身电子商务平台,既可以使农信社获取客户第一手数据、增加自身客户粘性;又可以获取客户信用记录,构建自身信用体系;最重要的是可以积极、精准、快速的为客户提供综合化金融服务。
农信社可以通过O2O平台充当支付担保角色,促进交易的完成。同时,通过O2O电商平台,农信社可以积累用户的消费数据、信用记录,以此构建自身客户的信用体系。农信社可以构建打通农户和城乡居民,社区居民和城市商户的O2O电商平台,例如,农信社建立自身电商服务平台,将农户的绿色农产品放在电商平台上销售,通过与社区便利店、居委会合作,组织居民线上购买绿色农产品,在社区便利店即可提取已购买的产品。在交易过程中,农信社全程充当支付担保,既促进农户农产品的销售,又保证了社区居民的资金安全。同时,农信社可根据O2O电商平台构建的信用体系,实现精准、快速的小微贷款。农信社如果能把握发展O2O的机会,培育服务生态圈,可以使自身在激烈的竞争中获得进一步的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04