
失去大数据分析 O2O会偏离本质
O2O概念,自诞生以来就受到业界广泛关注如今,O2O已经达到风生水起的阶段,在这个规程中,O2O也在不断变换新的玩法。有平台战略如阿里的手机淘宝,有线下实体合作,平台推进有如京东……但众多玩法始终都在强调流量、入口、价值,大大忽略了数据的价值,如果缺失了大数据分析就谈不上是真正的O2O。
对于传统企业而言,线上和线下数据分别掌握在不同部门或者不同公司手里。电商部门的数据基本都交给阿里京东等平台,电商部门基本只是掌握了用户的订单等简单信息,而这些又实在谈不上是数据。
而线下数据也基本是掌握在线下销售部门以及一些线下调查公司手里以调查问卷等形式实现。
表面上看线上数据为企业电商部门提供了非常好的营销支持,而线下又在指导商家的线下开店、线下促销等方面提供理论支持。
但如此的数据对商家的价值真有那么大吗?实则不然。
线上线下数据各自为战,数据的很多潜力无法挖掘。如线上购买如转化成线下的消费人群,就无法监控,追踪一半的用户会突然失踪,会出现数据断层。反之,线下用户突然去线上消费,而系统依然会记录为线上新用户。如此这般,当线下数据与线上数据配比时是难免要失真的。
这也难怪,往常是缺乏统一平台能够有效整合双平台数据,但O2O就完全不一样了。
O2O本质上讲就是线上与线下的2合一,打破往常线上线下的绝对界限。在O2O世界中已经不存在绝对的线上以及线下。因此,O2O要实现真正的整合数据是第一位的。
给大家描述下线上线下打通的状态,大家也可以补充:线上用户通过微信亦或是其他移动平台进入商城,通过营销鼓励以及技术等手段获取用户的年龄、性别、往常消费习惯等数据,而根据以上几个维度基本可判定该用户的消费习惯以此进行有效精准营销,在这一部分如以上电商无本质却别。但移动互联网有个非常好的功能,LBS定位,通过技术以及营销的奖励措施鼓励用户分享其地址,当地址积累足够多,基本就可描绘出企业在某具体街道的消费人群聚集区,而此数据可直接转给线下提供开设实体店的数据支持。在此,移动电商数据已经不仅仅是便于线上的营销,已经在影响线下的实体决策。
而对于线下,用户的签单以及会员信息就可以直接与线上打通,互相配比。如此可判断用户在线上线下的习惯分别如何,如对于服装品牌,线上重价格线下重体验是否可以基于数据的结果对于摆货有指导意义。而除此,数据与LBS的定位打通也可获得区域内购物的习惯,如某区域用户偏网购而在其他区域偏线下,如此可针对性进行营销。
微信有开发平台之后,众多开发公司蜂拥而上为企业开设微商城、微站服务,而以上数据必须建立在开发公司服务器上。必须但铁哥认为这种服务除了面子工程实在无多大用处。对于企业来说数据必须是自己可控的,如在对方服务器且不说数据分析是否到位专业,有否偷工减料问题,如今后更换服务商也面临数据丢失风险,这可能也是众多公司采用如此办法的原因吧。而出于数据安全角度考虑,线下数据给到线上公司又面临风险。大家都不想自己成为继携程之后的第二家公司吧。以上说法只针对企业自有的微店,而对于阿里已经京东来说亟需是要打通线上线下数据,入驻商家多用户多,根据数据分析可互推对方消费人群产品。
离开大数据分析,O2O就会偏离本质,就不能算是真正的O2O,随着大数据的发展,数据分析的应用也逐渐深入,在O2O的发展中,数据分析的作用会更加凸显,未来O2O会和大数据构成一个不可分割的整体。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14