京公网安备 11010802034615号
经营许可证编号:京B2-20210330
失去大数据分析 O2O会偏离本质
O2O概念,自诞生以来就受到业界广泛关注如今,O2O已经达到风生水起的阶段,在这个规程中,O2O也在不断变换新的玩法。有平台战略如阿里的手机淘宝,有线下实体合作,平台推进有如京东……但众多玩法始终都在强调流量、入口、价值,大大忽略了数据的价值,如果缺失了大数据分析就谈不上是真正的O2O。
对于传统企业而言,线上和线下数据分别掌握在不同部门或者不同公司手里。电商部门的数据基本都交给阿里京东等平台,电商部门基本只是掌握了用户的订单等简单信息,而这些又实在谈不上是数据。
而线下数据也基本是掌握在线下销售部门以及一些线下调查公司手里以调查问卷等形式实现。
表面上看线上数据为企业电商部门提供了非常好的营销支持,而线下又在指导商家的线下开店、线下促销等方面提供理论支持。
但如此的数据对商家的价值真有那么大吗?实则不然。
线上线下数据各自为战,数据的很多潜力无法挖掘。如线上购买如转化成线下的消费人群,就无法监控,追踪一半的用户会突然失踪,会出现数据断层。反之,线下用户突然去线上消费,而系统依然会记录为线上新用户。如此这般,当线下数据与线上数据配比时是难免要失真的。
这也难怪,往常是缺乏统一平台能够有效整合双平台数据,但O2O就完全不一样了。
O2O本质上讲就是线上与线下的2合一,打破往常线上线下的绝对界限。在O2O世界中已经不存在绝对的线上以及线下。因此,O2O要实现真正的整合数据是第一位的。
给大家描述下线上线下打通的状态,大家也可以补充:线上用户通过微信亦或是其他移动平台进入商城,通过营销鼓励以及技术等手段获取用户的年龄、性别、往常消费习惯等数据,而根据以上几个维度基本可判定该用户的消费习惯以此进行有效精准营销,在这一部分如以上电商无本质却别。但移动互联网有个非常好的功能,LBS定位,通过技术以及营销的奖励措施鼓励用户分享其地址,当地址积累足够多,基本就可描绘出企业在某具体街道的消费人群聚集区,而此数据可直接转给线下提供开设实体店的数据支持。在此,移动电商数据已经不仅仅是便于线上的营销,已经在影响线下的实体决策。
而对于线下,用户的签单以及会员信息就可以直接与线上打通,互相配比。如此可判断用户在线上线下的习惯分别如何,如对于服装品牌,线上重价格线下重体验是否可以基于数据的结果对于摆货有指导意义。而除此,数据与LBS的定位打通也可获得区域内购物的习惯,如某区域用户偏网购而在其他区域偏线下,如此可针对性进行营销。
微信有开发平台之后,众多开发公司蜂拥而上为企业开设微商城、微站服务,而以上数据必须建立在开发公司服务器上。必须但铁哥认为这种服务除了面子工程实在无多大用处。对于企业来说数据必须是自己可控的,如在对方服务器且不说数据分析是否到位专业,有否偷工减料问题,如今后更换服务商也面临数据丢失风险,这可能也是众多公司采用如此办法的原因吧。而出于数据安全角度考虑,线下数据给到线上公司又面临风险。大家都不想自己成为继携程之后的第二家公司吧。以上说法只针对企业自有的微店,而对于阿里已经京东来说亟需是要打通线上线下数据,入驻商家多用户多,根据数据分析可互推对方消费人群产品。
离开大数据分析,O2O就会偏离本质,就不能算是真正的O2O,随着大数据的发展,数据分析的应用也逐渐深入,在O2O的发展中,数据分析的作用会更加凸显,未来O2O会和大数据构成一个不可分割的整体。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29