
失去大数据分析 O2O会偏离本质
O2O概念,自诞生以来就受到业界广泛关注如今,O2O已经达到风生水起的阶段,在这个规程中,O2O也在不断变换新的玩法。有平台战略如阿里的手机淘宝,有线下实体合作,平台推进有如京东……但众多玩法始终都在强调流量、入口、价值,大大忽略了数据的价值,如果缺失了大数据分析就谈不上是真正的O2O。
对于传统企业而言,线上和线下数据分别掌握在不同部门或者不同公司手里。电商部门的数据基本都交给阿里京东等平台,电商部门基本只是掌握了用户的订单等简单信息,而这些又实在谈不上是数据。
而线下数据也基本是掌握在线下销售部门以及一些线下调查公司手里以调查问卷等形式实现。
表面上看线上数据为企业电商部门提供了非常好的营销支持,而线下又在指导商家的线下开店、线下促销等方面提供理论支持。
但如此的数据对商家的价值真有那么大吗?实则不然。
线上线下数据各自为战,数据的很多潜力无法挖掘。如线上购买如转化成线下的消费人群,就无法监控,追踪一半的用户会突然失踪,会出现数据断层。反之,线下用户突然去线上消费,而系统依然会记录为线上新用户。如此这般,当线下数据与线上数据配比时是难免要失真的。
这也难怪,往常是缺乏统一平台能够有效整合双平台数据,但O2O就完全不一样了。
O2O本质上讲就是线上与线下的2合一,打破往常线上线下的绝对界限。在O2O世界中已经不存在绝对的线上以及线下。因此,O2O要实现真正的整合数据是第一位的。
给大家描述下线上线下打通的状态,大家也可以补充:线上用户通过微信亦或是其他移动平台进入商城,通过营销鼓励以及技术等手段获取用户的年龄、性别、往常消费习惯等数据,而根据以上几个维度基本可判定该用户的消费习惯以此进行有效精准营销,在这一部分如以上电商无本质却别。但移动互联网有个非常好的功能,LBS定位,通过技术以及营销的奖励措施鼓励用户分享其地址,当地址积累足够多,基本就可描绘出企业在某具体街道的消费人群聚集区,而此数据可直接转给线下提供开设实体店的数据支持。在此,移动电商数据已经不仅仅是便于线上的营销,已经在影响线下的实体决策。
而对于线下,用户的签单以及会员信息就可以直接与线上打通,互相配比。如此可判断用户在线上线下的习惯分别如何,如对于服装品牌,线上重价格线下重体验是否可以基于数据的结果对于摆货有指导意义。而除此,数据与LBS的定位打通也可获得区域内购物的习惯,如某区域用户偏网购而在其他区域偏线下,如此可针对性进行营销。
微信有开发平台之后,众多开发公司蜂拥而上为企业开设微商城、微站服务,而以上数据必须建立在开发公司服务器上。必须但铁哥认为这种服务除了面子工程实在无多大用处。对于企业来说数据必须是自己可控的,如在对方服务器且不说数据分析是否到位专业,有否偷工减料问题,如今后更换服务商也面临数据丢失风险,这可能也是众多公司采用如此办法的原因吧。而出于数据安全角度考虑,线下数据给到线上公司又面临风险。大家都不想自己成为继携程之后的第二家公司吧。以上说法只针对企业自有的微店,而对于阿里已经京东来说亟需是要打通线上线下数据,入驻商家多用户多,根据数据分析可互推对方消费人群产品。
离开大数据分析,O2O就会偏离本质,就不能算是真正的O2O,随着大数据的发展,数据分析的应用也逐渐深入,在O2O的发展中,数据分析的作用会更加凸显,未来O2O会和大数据构成一个不可分割的整体。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29