
散点图简介
散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本。
同时散点图中常常还会拟合一些直线,以用来表示某些模型。
绘制基本散点图
本例选用如下测试数据集:
绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴。然后调用散点图函数geom_point()便可绘制出基本散点图。R语言示例代码如下:
# 基函数
ggplot(ah, aes(x = ageYear, y = heightIn)) +
# 散点图函数
geom_point()
:
基于颜色和点形对数据进行分组
本例选用如下测试数据集:
绘制方法是在基础散点图之上再在基函数的美学参数集里设置一个美学变量。可指定colour或者shape两种参数,分别将不同分组以不同颜色/点形表述。R语言示例代码(基于颜色分组)如下:
# 基函数:colour设置分组
ggplot(sah, aes(x = ageYear, y = heightIn, colour = sex)) +
# 散点图函数
geom_point()
运行结果:
R语言示例代码(基于点形分组)如下:
# 基函数:shape设置分组
ggplot(sah, aes(x = ageYear, y = heightIn, shape = sex)) +
# 散点图函数
geom_point()
运行结果:
说明:可自定义点形,共有大概36种点形可供选择。具体请参考R语言ggplot2手册。
映射连续型变量
本例选用如下测试数据集:
上一个示例中,映射到分组的变量是离散型变量。而对于除了横轴纵轴之外的连续型变量,也可以映射到散点图的色深和点大小上。R语言示例代码(绑定颜色)如下:
# 基函数:colour绑定连续变量
ggplot(sahw, aes(x = ageYear, y = heightIn, colour = weightLb)) +
# 散点图函数
geom_point()
运行结果:
R语言示例代码(绑定大小)如下:
# 基函数:size绑定连续变量
ggplot(sahw, aes(x = ageYear, y = heightIn, size = weightLb)) +
# 散点图函数
geom_point()
运行结果:
处理散点重叠
本例选用如下测试数据集:
如果图中的散点重叠现象比较严重,可以在散点图中设置散点的透明度来进行可视化。R语言示例代码如下:
# 基函数:size、colour分别绑定连续变量
ggplot(sahw, aes(x = ageYear, y = heightIn, size = weightLb, colour = sex)) +
# 散点图函数:alpha设置散点透明度
geom_point(alpha = .5) +
# 使散点的面积正比与变量值
scale_size_area() +
# 标尺函数:palette设置配色方案
scale_colour_brewer(palette = "Set1")
运行结果:
添加回归模型拟合线
本例选用如下测试数据集:
如果需要网散点图中添加回归模型拟合线,最主要是调用stat_smooth()函数。R语言示例代码如下:
# 基函数:sex绑定离散变量
ggplot(sah, aes(x = ageYear, y = heightIn, colour = sex)) +
# 散点图
geom_point() +
# 标尺函数:palette设置配色方案
scale_colour_brewer(palette = "Set1") +
# 拟合回归线段以及置信域(默认0.95/通过level参数可自定义)
geom_smooth()
运行结果:
线段为曲线是因为参与拟合模型为局部线性回归模型。往geom_smooth()函数中加入”method = lm”即可拟合经典线性回归。结果如下图:
添加自定义模型拟合线
本例选用如下测试数据集:
上面一小节展示了用全局/局部回归模型拟合样本点并展示拟合线段,它使用ggplot2提供的geom_smooth()函数自动拟合并完成绘制。
但在更多时候,我们会使用其他包的模型(非ggplot2内置模型)拟合。针对这种情况,我们需要自定义一个函数。该函数接受模型、横纵轴名、横轴范围、横轴样本点数量等参数,输出一个包含预测变量和预测值的数据框。R语言实现代码如下:
# 函数功能:输出模型预测结果
# 参数说明:
# model: 模型变量
# xvar: 预测变量集
# yvar: 实际变量集
# xrange: 预测变量取值范围
# samples: 预测变量个数
# 函数输出:实际值 - 预测值数据集
predictvals = function(model, xvar, yvar, xrange = NULL, samples = 100, ...) {
# 模型为lm/glm/loess其中一种的话可自动生成xrange
if (is.null(xrange)) {
if (any(class(model) %in% c("lm", "glm")))
xrange = range(model$model[[xvar]])
else if (any(class(model) %in% "loess"))
xrange = range(model$x)
}
# 生成并返回实际值 - 预测值数据集
newdata = data.frame(x = seq(xrange[1], xrange[2], length.out = samples))
names(newdata) = xvar
newdata[[yvar]] = predict(model, newdata = newdata, ...)
newdata
}
在使用其他模型建模好之后,将新的模型等各参数传递进上述函数,便得到预测结果数据集。最后将新的数据集输出为折线图即可。
下面展示一个略微复杂的例子,它将数据集根据不同性别分为两组,分别建立回归模型并绘制其拟合线。R语言实现代码如下:
# 建模函数:在这里设置模型
make_model = function(data) {
loess(heightIn ~ ageYear, data)
}
# 按性别切割数据集并返回模型列表
models = dlply(sah, "sex", .fun = make_model)
# 对不同数据集(男/女)进行预测
predvals = ldply(models, .fun = predictvals, xvar = "ageYear", yvar ="heightIn")
# 绘制数据集散点图以及模型拟合线
ggplot(sah, aes(x = ageYear, y = heightIn, colour = sex)) +
geom_point() +
geom_line(data = predvals)
运行结果:
向散点图添加边际地毯
本例选用如下测试数据集:
方法很简单,在原先散点图绘制函数的基础上增加边际地毯函数就行。R语言实现代码如下:
# 基函数
ggplot(faithful, aes(x = eruptions, y = waiting)) +
# 散点图函数
geom_point() +
# 边际地毯函数
geom_rug()
运行结果:
向散点图添加标签
本例选用如下测试数据集:
往散点图中添加标签的方法也很简单,在原有散点图函数的基础上增加文本函数即可。R语言实现代码如下:
# 基函数
ggplot(cty_1, aes(x = healthexp, y = infmortality)) +
# 散点图函数
geom_point() +
# 文本函数:aes参数中:y将原有纵轴值向上偏移,label设置绑定文本
# 将y轴偏移的目的是为了让文本展示在样本点上方而不是中间
geom_text(aes(y = infmortality + .2, label = Name))
运行结果:
PS:该示例中我们在文本绘制函数中重定义了美学特征集。之后文本绘制函数将使用新的美学特征集,但其他绘制函数的不变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14