
德国列车误点了,大数据分析来救援
德国人过去引以为傲的精准,反映在列车极为准时上,可惜这个传统逐渐失守,但德国人决定找回过去的荣耀,过去 2 年来,西门子(Siemens)的工程师努力应用大数据资料分析协助预防性维修,来让列车恢复准点。
根据欧盟报告,德国的列车准点率逐渐“掉漆”,2014 年只有 78.3% 德国长途列车准点,准点的定义是在表定时间误差 6 分钟的时间内抵达,这个糟糕的准点率不仅大幅退步,更是排名垫底,在 23 个欧盟国家内只赢过 2 个国家,立陶宛的 74.8% 准点率以及葡萄牙的 77% 准点率。
就在德国准点率掉漆的同时,德国综合机电大厂西门子,却在西班牙创造准点率标竿,西门子与西班牙国家铁路(Renfe)的合资公司,在西班牙所管理 的列车行程中,每 2,300 趟只有一趟延迟超过 5 分钟,准点率高达 99.98%,不仅高于西班牙全国平均 89.9%,更高于欧盟之中的佼佼者芬兰的 95.4%。
西班牙国家铁路对准点率的信心,反应在误点赔偿上,要是从马德里到巴塞隆纳的高速列车延迟超过 15 分钟,可以全额退费赔偿。
这个准点率标竿来自于物联网与大数据的概念,西门子列车上如今有无数感测器可以传递信息给西门子做分析,西门子把慕尼黑附近阿拉克(Allach) 的火车头工厂改造成为数据中心,有 30 位软件专家分析西门子列车感测器传来的大量资料,以大数据分析事先预测零部件该更换的时间,在实际损坏之前,于例行维修中预先更换,确保行驶中不会发生故 障,也就防止因机械故障造成的误点。
一辆列车延迟,会导致后续车班大乱,以伦敦地铁来说,要是早上 7 点有列车故障,到 12 点车班都还会受到影响,因此能预先维修防止故障对铁路运输来说相当重要。
预先维修改变产业营运方式
预先维修并非新观念,在工厂生产线领域早在 15 年前就开始应用,因为工厂生产线若是运转中因零件长久耗损而故障停摆,产线整个停下来修理,那可损失大了,因此很早就发展预先维修。
随着网络链接性提升,预先维修的观念逐渐扩展至消费性产品与服务领域,其中,航空产业又是新观念的领航者,两大航空引擎商劳斯莱斯(Rolls- Royce)与奇异(GE)英雄所见略同,认为卖引擎不只是银货两讫就好,预先维修的观念,让引擎制造商还能以时间为单位收取维护服务费用,在服务期限内 保证客户的引擎不发生故障。
预先维修也改变了铁路业的商业模式,过去铁路业者要自行准备预算来修复故障车辆与系统,如今,西门子将预先维修当做服务销售,卖给铁路营运者“可用性”,保证列车在需要时不故障一定可用。
这种概念也延伸到汽车业,过去定期回厂检修时,若发现车主的耗件已经损耗 7 成,往往就直接更换,因为这个耗件大概无法撑到明年回厂检修。但是,其实该耗件或许还能安全地开上半年没问题,提早更换不但花钱,也造成浪费;如今,奥迪 (Audi)就引进了预先维修概念,汽车车身上装有感测器,能把资料传给经销商,若从资料中察觉有耗件即将损坏,就立即安排在最适当时间回厂换修,如此一 来,一方面可确保不会开到一半故障,一方面可把耗件使用到最长时间,节省消费者的金钱。
同样的概念也早已应用于电梯产业,蒂森克虏伯(ThyssenKrupp)于 2015 年开始于其全球 120 万辆电梯中安装加速度、声音与震动感测器,透过回传的资料,可以准确预估电梯 10~20 天内需要维修,此时蒂森克虏伯可提前通知客户,告知有零件耗损风险,需要预先维修,由于提前通知,利于安排在客户最方便的时间进行。而由于有必要才维修, 也减少了维修次数,目前电梯平均每年定期维修 5~6 次,加装感测器之后,只需要 3 次,1 年可为蒂森克虏伯节省高达数亿欧元。
物联网与大数据分析应用,不仅可望让德国列车恢复准时,也已经改变许多产业的营运方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29