
大数据是把双刃剑,安全意识不容忽视
当前,大数据在提升政府治理能力、产业转型升级、服务改善民生中发挥的作用越来越大。但记者采访中发现,受立法滞后、交易秩序不稳定、核心技术与发达国家差距较大等因素影响,数据安全面临挑战。
在全国首个大数据综合试验区贵州,2015年大数据产业规模突破2000亿元,实现两年翻番。“近年来,国家先后出台了一系列政策推动大数据、电子商务领域发展,信息经济迎来发展黄金期。2015年,信息经济规模超过18万亿,电子商务交易额超过20万亿,数据总量占全球的13%。据预测,未来5年大数据产业规模年均增长率将超过50%,到2020年数据总量将占全球的20%,届时我国将成为世界第一数据资源大国和全球数据中心。”国家发展改革委副主任林念修说。
据国家发展改革委高技术产业司调研员刘勇介绍,京津冀以及贵阳、重庆、上海等地大数据产业集聚效应正在形成。数据铁笼、数据治税、精准扶贫等一批大数据应用正在推广,阿里、京东等企业大数据征信、大数据金融服务也不断推陈出新,新模式、新业态持续涌现,数据红利逐步显现。
但同时,信息安全问题不容忽视。中国互联网协会发布的《网民权益保护调查报告(2015)》显示,78.2%的网民个人身份信息被泄露过、63.4%的网民个人网上活动信息被泄露过。另据360网站安全检测,2015年共扫描各类网站231.2万个,其中,存在漏洞的网站101.5万个,占扫描网站总数的43.9%;存在高危安全漏洞的30.8万个,占扫描网站总数的13%。
“大数据是把‘双刃剑’,它能够造福社会,但如果被一些不法分子利用,将会损害社会利益和公众利益。传统解决网络安全的方法是把内外网隔离开,用终端设备隔离风险,但是随着移动互联网、云技术的出现,移动终端在4G、WiFi信号、电缆当中穿梭,网络边界已经消失,传统保障安全的办法效果差。”奇虎360科技有限公司总裁齐向东说。
值得注意的是,在交易主体审核中,一些交易所选择了较为宽松的审核程序,仅进行邮箱、手机验证方式对会员进行审核,宽松的准入机制给数据安全留下隐患。
“从实践来看,跟大数据相关的法律法规还有很大的完善和建设空间,比如在数据价值和产权没有明确分类和清晰界定的时候,数据收集者的动机可能被隐藏,数据安全和各类隐私存在着一定的风险。”中国互联网协会秘书长卢卫说。
中国信息通信研究院产业与规划研究所所长胡坚波认为,当前,大数据开放安全法规不明晰。比如,数据开放的安全分类、分级标准缺失等。“立法还面临很多挑战,包括大数据资源开发利用界限、跨境数据流动、隐私保护等问题。”胡坚波说。
据了解,针对大数据安全问题,国家有关部门正在推动网络安全立法,加快关键基础设施保护、网络安全审查、个人信息保护等法律法规的增补完善。在标准制定方面,正在组织开展涉及国家金融、能源、互联网企业的大数据安全调研活动,并启动了大数据安全标准研制工作。
业内人士建议,应树立大数据整体安全观,平衡产业发展和隐私保护、国家安全之间的关系,协同促进大数据安全与发展,具体可从三方面入手。一是用大数据技术解决大数据时代的安全问题。中国工程院院士邬贺铨说,大数据已成为信息社会的热点,也是信息安全博弈的焦点。应加快数据采集、存储、清洗等关键技术攻关,集中力量突破信息管理、信息保护和基础支撑关键技术,提高自主保障能力。二是完善数据安全法律体系。中国政法大学党委书记石亚军教授说,大数据立法应把握四个原则:超前性与可操作性;时代性与地域性,既要把脉潮流,还要立足本土;实践性,既要科学规范、有效,又要通俗易懂、易用;国际性,取人之长,补己之短。三是引导公众加强数据安全意识,守住个人“数据底线”。开展数据安全宣传活动,通过多种形式向全社会普及网络安全知识,提升全社会的数据安全意识和防护技能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29