
资深大数据专家???
最近朋友圈里许多的人在为公司招"资深大数据"的人才,不禁思考,什么样的人才是资深的大数据专家?也许这个题目有点大,那就再落地一点,什么样的人才能帮我的公司带入到大数据的领域,并为我的公司盈利?
技术角度
先从技术角度来说,资深大数据专家首先要有相关的代码能力,要能够搭建Hadoop,Spark,Yarn这样的架构,要知道在这样的架构里要用什么语言来满足自己的业务发展。
然后又要懂得数据挖掘及数据可视化,同时,也要掌握前端的所有技术(LVS,CDN,负载均衡....)及相应的语言选择,有人说,大数据时代,要对R,Python,Scala都可以知道并明白它们的常用函数及相关的语法格式。
同时,你也要对相关的算法有一定的了解,经常用到的有决策树,Apriori,K-NN,K-MEAN等等的算法,当你开始使用这些算法的时候,一定要了解它的原理。这样,至少在你后期的算法优化的过程帮助你提高你的效能。
好了,从上面的三个角度来说。看一看我们身边是否有这样的人。答案显而易见,没有!又或者有,都是在BAT这样的大公司,一个新兴的小公司如何去招到这样资深的大数据人才,很难!因为,在你懂得Hadoop之后,业务要有较快的反应,此时你又要考虑Spark,随着实时性的发展,你势必又要学习Storm.这一方面的人才不可能技术非常专一,相反,他的技术感知,或者说相应的学习能力才更为重要!
所以,从技术角度来说,资深大数据人才,不仅仅是一项技术很好,而是一个技术综合能力及学习能力很强的人。
业务角度
最近听了两个论坛,一个是IBM的,一个是R语言大会。感触非常深,IBM在大数据领域可谓是引领了概念与潮流。上来他的本专业博士就说到,现在国内的大数据公司70%以上都跟大数据没什么关系!这是现实,我自己所从事的行来所从事的数据分析也仅限于TXT,EXCEL这类的原文本分析,非结构化的数据在传统行业很少。
大数据做的最好的行业可能就是广告行业,打开手机,你的朋友圈,PC,PAD。至少广告是会随着你的平台而至死追随你的。而广告,金融,医疗这三个行业,为什么大数据会最先落地,不是因为他们这个行业技术成熟度高或是什么,更为重要的可能就是这三个行业比较有钱吧!这是在R语言大会上李舰(至于说他是谁,相信用R做过文本分析的人可能知道,是写RWordseg包的那位)说的。
如何去理解你的业务,这一点可能是摆在大数据人才面前最为重要的问题。你的技术再强,算法再精确,没有对业务的详细了解是不可能做出很有成效的结果。有人又说到,大数据是互联网行业,我们对传统行业又不了解,而且也没有积累,如何能够快速掌握了解一个行业,进而对相关的数据有一个更深入的了解。
在这里,我个人比较欣赏猎头的做法,当你想了解一个行业的时候,你不是去看书,而是去招人!我相信,在与人沟通的过程中,你会了解到更多的信息。混论坛也是一个比较好的选择,因为在论坛上,你能够看到这个行业的方方面面。对你了解业务尤其重要。
培训业务思维,还有一个最简单的办法就是多和你们公司的销售聊聊!
综上所述,我所理解的资深大数据人才,重点还是在于对业务的理解,说的落地一点就是对你所采集下来的TXT,EXCEL数据里关键的几个指标的把控。你要知道某一个指标数过大或过小意味着什么?如何让这些指标为你产生价值跟利益!然后才是相关技术的学习,技术这一块,个人建议多懂一些,当要用时,再深化细节里边的内容。
举一个例子,为什么在人才市场里,算法工程师要比代码工程师价格高,因为搞算法的人必须要会代码,同时要能明白算法的内在逻辑。这一点是在自己学习过程中才体会到的,当你逻辑清楚之会的代码实现就相对简单一些了。
架构,这一点对资深大数据工程师来说,是必须要有的能力。要能够对传统行业搭建起最好的架构并能够运行,同时也要兼顾到后期的可扩展。还有一点,就是你要跟你的领导讲明白。
业务能力,落地一点就是能够什么时侯收回成本并实现盈利!记得我的数据挖掘老师说过,对于传统行业做数据分析与挖掘,你要能够在3-6的时间里让客户见到效益。否则你的数据挖掘就没有意义!
好了,以上就是我所理解的资深大数据的概念。希望在大数据这个风口,自己能够少点浮躁,多点踏实,把技术学好,把业务理解透彻。谦卑着努力,加油!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14