京公网安备 11010802034615号
经营许可证编号:京B2-20210330
资深大数据专家???
最近朋友圈里许多的人在为公司招"资深大数据"的人才,不禁思考,什么样的人才是资深的大数据专家?也许这个题目有点大,那就再落地一点,什么样的人才能帮我的公司带入到大数据的领域,并为我的公司盈利?
技术角度
先从技术角度来说,资深大数据专家首先要有相关的代码能力,要能够搭建Hadoop,Spark,Yarn这样的架构,要知道在这样的架构里要用什么语言来满足自己的业务发展。
然后又要懂得数据挖掘及数据可视化,同时,也要掌握前端的所有技术(LVS,CDN,负载均衡....)及相应的语言选择,有人说,大数据时代,要对R,Python,Scala都可以知道并明白它们的常用函数及相关的语法格式。
同时,你也要对相关的算法有一定的了解,经常用到的有决策树,Apriori,K-NN,K-MEAN等等的算法,当你开始使用这些算法的时候,一定要了解它的原理。这样,至少在你后期的算法优化的过程帮助你提高你的效能。
好了,从上面的三个角度来说。看一看我们身边是否有这样的人。答案显而易见,没有!又或者有,都是在BAT这样的大公司,一个新兴的小公司如何去招到这样资深的大数据人才,很难!因为,在你懂得Hadoop之后,业务要有较快的反应,此时你又要考虑Spark,随着实时性的发展,你势必又要学习Storm.这一方面的人才不可能技术非常专一,相反,他的技术感知,或者说相应的学习能力才更为重要!
所以,从技术角度来说,资深大数据人才,不仅仅是一项技术很好,而是一个技术综合能力及学习能力很强的人。
业务角度
最近听了两个论坛,一个是IBM的,一个是R语言大会。感触非常深,IBM在大数据领域可谓是引领了概念与潮流。上来他的本专业博士就说到,现在国内的大数据公司70%以上都跟大数据没什么关系!这是现实,我自己所从事的行来所从事的数据分析也仅限于TXT,EXCEL这类的原文本分析,非结构化的数据在传统行业很少。
大数据做的最好的行业可能就是广告行业,打开手机,你的朋友圈,PC,PAD。至少广告是会随着你的平台而至死追随你的。而广告,金融,医疗这三个行业,为什么大数据会最先落地,不是因为他们这个行业技术成熟度高或是什么,更为重要的可能就是这三个行业比较有钱吧!这是在R语言大会上李舰(至于说他是谁,相信用R做过文本分析的人可能知道,是写RWordseg包的那位)说的。
如何去理解你的业务,这一点可能是摆在大数据人才面前最为重要的问题。你的技术再强,算法再精确,没有对业务的详细了解是不可能做出很有成效的结果。有人又说到,大数据是互联网行业,我们对传统行业又不了解,而且也没有积累,如何能够快速掌握了解一个行业,进而对相关的数据有一个更深入的了解。
在这里,我个人比较欣赏猎头的做法,当你想了解一个行业的时候,你不是去看书,而是去招人!我相信,在与人沟通的过程中,你会了解到更多的信息。混论坛也是一个比较好的选择,因为在论坛上,你能够看到这个行业的方方面面。对你了解业务尤其重要。
培训业务思维,还有一个最简单的办法就是多和你们公司的销售聊聊!
综上所述,我所理解的资深大数据人才,重点还是在于对业务的理解,说的落地一点就是对你所采集下来的TXT,EXCEL数据里关键的几个指标的把控。你要知道某一个指标数过大或过小意味着什么?如何让这些指标为你产生价值跟利益!然后才是相关技术的学习,技术这一块,个人建议多懂一些,当要用时,再深化细节里边的内容。
举一个例子,为什么在人才市场里,算法工程师要比代码工程师价格高,因为搞算法的人必须要会代码,同时要能明白算法的内在逻辑。这一点是在自己学习过程中才体会到的,当你逻辑清楚之会的代码实现就相对简单一些了。
架构,这一点对资深大数据工程师来说,是必须要有的能力。要能够对传统行业搭建起最好的架构并能够运行,同时也要兼顾到后期的可扩展。还有一点,就是你要跟你的领导讲明白。
业务能力,落地一点就是能够什么时侯收回成本并实现盈利!记得我的数据挖掘老师说过,对于传统行业做数据分析与挖掘,你要能够在3-6的时间里让客户见到效益。否则你的数据挖掘就没有意义!
好了,以上就是我所理解的资深大数据的概念。希望在大数据这个风口,自己能够少点浮躁,多点踏实,把技术学好,把业务理解透彻。谦卑着努力,加油!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13