
数据可视从数据探索到工程落地
加快推动从数据探索到工程落地的过程是一件很有意义的事情,数据分析要如何做到尽量和数据分析的流程紧密结合,又要方便工程化落地一直困扰着许多数据分析师和Web工程师。数据分析师不想深究太多前端JS实现,Web工程师也不想插手复杂的业务逻辑与SQL。对于工程化这件事情,如果数据分析输出的图表是基于html的,那Web工程师只需要复制粘贴相应的js配置项然后引用一下js库就完成70%的工作了。但是对于数据探索来说,大部分的数据可视过程70%的工作可能都是失败、或者暂时的,花费大量精力完成的前端代码并不会对数据分析这件事情本身带来太多帮助。但是现实世界并没有这么美好,很多时候身兼数职的全能王倒是因为会给老板省钱受到青睐,本文将讨论几种可能的解决方案。
可能的解决方案
数据分析师+交互式绘图
常见的方式比如radiant(R)、caravel(Python)都具有这样的功能,数据分析师可以建立一个数据库连接,然后在连接中通过SQL语句得到想要的数据,再通过交互式的绘图方式完成数据可视化的探索。
优势:让数据分析师可以集中精力在数据分析本身,可以快速实现数据探索、建模、甚至分享页面和仪表盘。
劣势:复杂的数据分析算法实现起来比较困难,数据需要事先规整清晰好,满足多维数据分析条件才行,前端绘图库无法比较困难,整体定制性较弱。
数据分析师写JS
第一种方案建立在交互式绘图工具足够好用的基础上,对于很多非主流的startup并不一定完全适用,因为startup人手有限,很可能要求数据分析师有能自行解决前端数据可视化的能力需求。
常见的方式是通过SQl取数后调用一个JS制图库(比如echarts、highcharts、plotly等等),分析师需要在js中完成许多数据描述性统计的工作直接展示在前端页面上,然后将配置项和SQL保存在数据库中,以供后续的API查询调用。
优势:简化了数据产品落地的流程,在SQL不够用的情况下可以用JS来补足,可以快速实现定制化的前端图表输出,满足各种可视化特殊需求。
劣势:简单的数据分析算法实现也很困难,数据分析很难专注于数据本身,需要处理很多JS相关问题。
数据分析师写R
上述两种方案在数据处理上都并不是非常完美,所以说,更加理想的方案是通过用一种数据分析语言完成数据分析和数据可视的工作,既要保证数据分析的灵活性,又要保证工程落地的敏捷性变成一个很关键的事情。但是通常自己写前端JS的代码又非常的麻烦,可能还要写很多MapReduce。一些常见的描述性统计(极值均值求和计数等等)在前端实现都会耗费很多功夫,更不用说更高级的一些算法了,而大部分数据分析工作在Python或者R语言中其实是可以快速完成。那么,从Python和R中直接输出一些html图表不失为一种好的办法,当然更多场景下我是建议用R来完成。
优势:既能满足复杂的算法模型快速实现,又能满足工程敏捷落地的需求。
劣势:对于简单分析而言,不如方案一来得方便,快捷。
具体方案
在R中,我们其实可以使用 DT + ggplot2 + plotly + flexdashboard 的方案来完成数据分析图表的绘制和产出。首先,在探索分析的过程中可以使用ggplot2对数据进行各种分组暂时,这样就保证了数据分析结果维度的丰满,通过 + 的链式调用,可以在同一基础图形上变换多种展现方式进而得到更多多维分析结果。其次,利用 plotly,ggplot2 所绘制的静态图表可以快速拓展为动态图表。最后,通过 flexdashboard,可以快速排版数据可视化结果,提供一个Web服务作为输出。
简单例子
knitr::opts_chunk$set(echo = TRUE)
library(readxl)
library(dplyr)
竞品分析列表 <- read_excel("~/竞品分析列表.xls",col_names = T)
colnames(竞品分析列表) <- 竞品分析列表[1,]
竞品分析列表 <- 竞品分析列表[-1,]
DT::datatable(竞品分析列表)
library(ggplot2)
# 频数统计
p <- ggplot(data=地区频数, aes(x=地区,y=频数,fill=大小)) +
geom_bar(stat = "identity",alpha = 0.8) +
labs(x = '地区', y = '频数') +
ggtitle("地域分布") +
coord_flip() +
theme(text = element_text(family = 'SimSun'))
p
library(plotly)
ggplotly(p)
只需要修改一下 yaml 配置并引入 flexdashboard 即可
---
title: "竞品分析"
author: "Harry Zhu"
date: "September 17, 2016"
output:
flexdashboard::flex_dashboard:
orientation: columns
vertical_layout: fill
---
knitr::opts_chunk$set(echo = TRUE)
library(flexdashboard)
library(readxl)
library(dplyr)
竞品分析列表 <- read_excel("~/竞品分析列表.xls",col_names = T)
colnames(竞品分析列表) <- 竞品分析列表[1,]
竞品分析列表 <- 竞品分析列表[-1,]
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27